Nonlinear shallow water equations are employed to model the inviscid slumping of fluid along an inclined plane and analytical solutions for the motion are derived using the hodograph transformation to reveal the run-up and the inception of a bore on the backwash. Starting from rest, the fluid slumps along the inclined plane, attaining a maximum run-up, before receding and forming a relatively thin and fast moving backwash. This interacts with the less rapidly moving fluid within the interior to form a bore. The evolution of the bore and the velocity and height fields either side of it are also calculated to reveal that it initially grows in magnitude before diminishing and intersecting with the shoreline. This analytical solution reveals features of the solution, such as the onset of the bore and its growth and decline, previously known only through numerical computation and the method presented here may be applied quite widely to the run-up of other initial distributions of fluid. © 2009 Cambridge University Press.

Run-up and backwash bore formation from dam-break flow on an inclined plane

Antuono M;
2009

Abstract

Nonlinear shallow water equations are employed to model the inviscid slumping of fluid along an inclined plane and analytical solutions for the motion are derived using the hodograph transformation to reveal the run-up and the inception of a bore on the backwash. Starting from rest, the fluid slumps along the inclined plane, attaining a maximum run-up, before receding and forming a relatively thin and fast moving backwash. This interacts with the less rapidly moving fluid within the interior to form a bore. The evolution of the bore and the velocity and height fields either side of it are also calculated to reveal that it initially grows in magnitude before diminishing and intersecting with the shoreline. This analytical solution reveals features of the solution, such as the onset of the bore and its growth and decline, previously known only through numerical computation and the method presented here may be applied quite widely to the run-up of other initial distributions of fluid. © 2009 Cambridge University Press.
2009
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Nonlinear Shallow Water Equations
Shock waves
Breaking waves
gravity waves
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/267104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact