The Golgi apparatus plays a central role in lipid and protein post-translational modification and sorting. Morphologically the organelle is heterogeneous and it is possible to distinguish stacks of flat cysternae (cis- and medial Golgi), tubular-reticular networks and vesicles (trans-Golgi). These morphological differences parallel a distinct functionality with a selective distribution and complementary roles of the enzymes found in the different compartments. The Golgi apparatus has been also shown to be involved in Ca2+ signalling: it is indeed endowed with Ca2+ pumps, Ca2+ release channels and Ca2+ binding proteins and is thought to participate in determining the spatio-temporal complexity of the Ca2+ signal within the cell, though this role is still poorly understood. Recently, it has been demonstrated that the organelle is heterogeneous in terms of Ca2+ handling and selective reduction of Ca2+ concentration, both in vitro and in a genetic human disease, within one of its sub-compartment results in alterations of protein trafficking within the secretory pathway and of the entire Golgi morphology. In this paper we review the available information on the Ca2+ toolkit within the Golgi, its heterogeneous distribution in the organelle sub-compartments and discuss the implications of these characteristics for the physiopathology of the Golgi apparatus.

Ca2+ signalling in the Golgi apparatus

Pozzan Tullio
2011

Abstract

The Golgi apparatus plays a central role in lipid and protein post-translational modification and sorting. Morphologically the organelle is heterogeneous and it is possible to distinguish stacks of flat cysternae (cis- and medial Golgi), tubular-reticular networks and vesicles (trans-Golgi). These morphological differences parallel a distinct functionality with a selective distribution and complementary roles of the enzymes found in the different compartments. The Golgi apparatus has been also shown to be involved in Ca2+ signalling: it is indeed endowed with Ca2+ pumps, Ca2+ release channels and Ca2+ binding proteins and is thought to participate in determining the spatio-temporal complexity of the Ca2+ signal within the cell, though this role is still poorly understood. Recently, it has been demonstrated that the organelle is heterogeneous in terms of Ca2+ handling and selective reduction of Ca2+ concentration, both in vitro and in a genetic human disease, within one of its sub-compartment results in alterations of protein trafficking within the secretory pathway and of the entire Golgi morphology. In this paper we review the available information on the Ca2+ toolkit within the Golgi, its heterogeneous distribution in the organelle sub-compartments and discuss the implications of these characteristics for the physiopathology of the Golgi apparatus.
2011
Istituto di Neuroscienze - IN -
Golgi apparatus
Calcium
Fluorescence resonance energy transfer
Secretory pathway Ca2+ ATPase1
Hailey-Hailey disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/267300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 107
  • ???jsp.display-item.citation.isi??? ND
social impact