Structural and dynamic features of bis(2-ethylhexyl) phosphoric acid (HDEHP)-n-octylamine (NOA) mixtures as a function of the NOA mole fraction (X-NOA) have been investigated by SAXS, WAXS, IR, dielectric spectroscopy and polarized optical microscopy. In the 0 <= X-NOA < 0.5 range, mixtures are transparent liquids, while the abrupt formation of a waxy solid characterized by an hexagonal bidimensional structure occurs at X-NOA = 0.5. Such a composition-induced phase transition results from the synergetic effect of the progressive increase in number density of ordered HDEHP-NOA nanodomains with X-NOA. Mainly driven by an HDEHP to NOA proton transfer, the increase of structural order with X-NOA arises from the progressive substitution of loosely hydrogen bonded HDEHP-HDEHP aggregates with strongly bonded NOA-HDEHP ones. Analysis of SAXS patterns at temperatures in the 10-70 degrees C range emphasized that these local structures are scarcely impacted by an increase of thermal fluctuations. Effects due to the steric compatibility between HDEHP and NOA apolar moieties have been highlighted. Overall, the results allow us to emphasize the role of specific polar and apolar interactions joined to steric effects in regulating the molecular organization in surfactant mixtures and can be used to design novel materials with planned physico-chemical properties.
Self-assembly in surfactant-based mixtures driven by acid-base reactions: bis(2-ethylhexyl) phosphoric acid-n-octylamine systems
Calandra Pietro;
2013
Abstract
Structural and dynamic features of bis(2-ethylhexyl) phosphoric acid (HDEHP)-n-octylamine (NOA) mixtures as a function of the NOA mole fraction (X-NOA) have been investigated by SAXS, WAXS, IR, dielectric spectroscopy and polarized optical microscopy. In the 0 <= X-NOA < 0.5 range, mixtures are transparent liquids, while the abrupt formation of a waxy solid characterized by an hexagonal bidimensional structure occurs at X-NOA = 0.5. Such a composition-induced phase transition results from the synergetic effect of the progressive increase in number density of ordered HDEHP-NOA nanodomains with X-NOA. Mainly driven by an HDEHP to NOA proton transfer, the increase of structural order with X-NOA arises from the progressive substitution of loosely hydrogen bonded HDEHP-HDEHP aggregates with strongly bonded NOA-HDEHP ones. Analysis of SAXS patterns at temperatures in the 10-70 degrees C range emphasized that these local structures are scarcely impacted by an increase of thermal fluctuations. Effects due to the steric compatibility between HDEHP and NOA apolar moieties have been highlighted. Overall, the results allow us to emphasize the role of specific polar and apolar interactions joined to steric effects in regulating the molecular organization in surfactant mixtures and can be used to design novel materials with planned physico-chemical properties.File | Dimensione | Formato | |
---|---|---|---|
prod_298183-doc_85412.pdf
non disponibili
Descrizione: Self-assembly in surfactant-based mixtures driven by acid-base reactions: HDEHP/nOA systems
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.