An optical switch based on liquid crystal dielectric loaded surface plasmon polariton waveguides is proposed and theoretically analyzed. The infiltration of the plasmonic structure with a nematic liquid crystalline material serving as the dielectric loading is shown to allow for extensive electrical tuning of its waveguiding characteristics. Both the electrical switching and optical properties of the proposed waveguide are investigated in the context of designing a directional coupler optical switch, which is found to combine efficient voltage control, low power consumption, high extinction ratio, and relatively low insertion losses. © 2011 American Institute of Physics.

Liquid crystal-based dielectric loaded surface plasmon polariton optical switches

Zografopoulos Dimitrios C;
2011

Abstract

An optical switch based on liquid crystal dielectric loaded surface plasmon polariton waveguides is proposed and theoretically analyzed. The infiltration of the plasmonic structure with a nematic liquid crystalline material serving as the dielectric loading is shown to allow for extensive electrical tuning of its waveguiding characteristics. Both the electrical switching and optical properties of the proposed waveguide are investigated in the context of designing a directional coupler optical switch, which is found to combine efficient voltage control, low power consumption, high extinction ratio, and relatively low insertion losses. © 2011 American Institute of Physics.
2011
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/267653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact