The effects of doping on the spectral properties of low-doped systems are investigated by means of the coherent potential approximation to describe the distributed disorder induced by the impurities and the phonon-phonon noncrossing approximation to characterize a wide class of electron-phonon interactions that dominate the lowenergy spectral features. When disorder and electron-phonon interaction work on comparable energy scales, a strong interplay between them arises, the effect of disorder can no longer be described as a mere broadening of the spectral features, and the phonon signatures are still visible despite the presence of strong disorder. As a consequence, the disorder-induced metal-insulator transition is strongly affected by a weak or moderate electron-phonon coupling, which is found to stabilize the insulating phase.
Strong interplay between electron-phonon interaction and disorder in low-doped systems
Domenico Di Sante;Sergio Ciuchi
2014
Abstract
The effects of doping on the spectral properties of low-doped systems are investigated by means of the coherent potential approximation to describe the distributed disorder induced by the impurities and the phonon-phonon noncrossing approximation to characterize a wide class of electron-phonon interactions that dominate the lowenergy spectral features. When disorder and electron-phonon interaction work on comparable energy scales, a strong interplay between them arises, the effect of disorder can no longer be described as a mere broadening of the spectral features, and the phonon signatures are still visible despite the presence of strong disorder. As a consequence, the disorder-induced metal-insulator transition is strongly affected by a weak or moderate electron-phonon coupling, which is found to stabilize the insulating phase.File | Dimensione | Formato | |
---|---|---|---|
prod_306317-doc_104598.pdf
solo utenti autorizzati
Descrizione: Strong interplay between electron-phonon interaction and disorder in low-doped systems
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.