Two diastereoselective and straightforward protocols for the high-yielding synthesis of 2,3-trans- and 2,3-cis-6-methoxy-3-substituted morpholine-2-carboxylic esters were realized in few steps, through the condensation between 5,6-diethoxy-5,6-dimethyl-1,4-dioxan-2-one and an appropriate imine, which is the key reaction to control the C2-C3 relative stereochemistry, followed by a methanolysis/ring-closure tandem reaction sequence. In particular, 2,3-trans-morpholines derive from the R*,S*-product of the acid condensation of N-functionalized alkylimines with the silylketene acetal of the above lactone, whereas 2,3-cis-morpholines derive from the R*,R*-product of basic condensation of an N-tosylimines with the lactone.
Diastereoselective Protocols for the Synthesis of 2,3-trans- and 2,3-cis-6-Methoxy-morpholine-2-carboxylic Acid Derivatives
Penso Michele;
2012
Abstract
Two diastereoselective and straightforward protocols for the high-yielding synthesis of 2,3-trans- and 2,3-cis-6-methoxy-3-substituted morpholine-2-carboxylic esters were realized in few steps, through the condensation between 5,6-diethoxy-5,6-dimethyl-1,4-dioxan-2-one and an appropriate imine, which is the key reaction to control the C2-C3 relative stereochemistry, followed by a methanolysis/ring-closure tandem reaction sequence. In particular, 2,3-trans-morpholines derive from the R*,S*-product of the acid condensation of N-functionalized alkylimines with the silylketene acetal of the above lactone, whereas 2,3-cis-morpholines derive from the R*,R*-product of basic condensation of an N-tosylimines with the lactone.File | Dimensione | Formato | |
---|---|---|---|
prod_306339-doc_87368.pdf
solo utenti autorizzati
Descrizione: Diastereoselective Protocols for the Synthesis of 2,3-trans- and 2,3-cis-6-Methoxy-morpholine-2-carboxylic Acid Derivatives
Dimensione
541.36 kB
Formato
Adobe PDF
|
541.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.