The majority of the literature on superconducting cavities for particle accelerators concentrates on the interaction of a radiofrequency (RF) electromagnetic field with a superconductor cooled in liquid helium, generally either at a fixed temperature of 4.2 K or 1.8 K, basing the analysis of experimental results on the assumption that the superconductor is at the same temperature as the infinite reservoir of liquid helium. Only a limited number of papers have extended their analysis to the more complex overall system composed of an RF field, a superconductor and liquid helium. Only a few papers have analyzed, for example, the problem of the Kapitza resistance, i.e. the thermal boundary resistance between the superconductor and the superfluid helium. Among them, the general conclusion is that the Kapitza resistance, one of the most controversial and less understood topics in physics, is generally negligible, or not relevant for the performance enhancement of cavities. In our work presented here, studying the performance of 6 GHz niobium (Nb) test cavities, we have discovered and studied a new effect consisting of an abrupt change in the surface resistance versus temperature at the superfluid helium lambda transition T lambda. This abrupt change (or 'jump') clearly appears when the RF measurement of a cavity is performed at constant power rather than at a constant field. We have correlated this jump to a change in the thermal exchange regime across the lambda transition, and, through a simple thermal model and further reasonable assumptions, we have calculated the thermal boundary resistance between niobium and liquid helium in the temperature range between 4.2 K and 1.8 K. We find that the absolute values of the thermal resistance both above and below the lambda point are fully compatible with the data reported in the literature for heat transfer to pool boiling helium I (HeI) above T lambda and for the Kapitza interface resistance (below T lambda) between a polished metal surface and superfluid He-II. Finally, based on the well-documented evidence that the surface status of metal to liquid helium influences the heat exchange towards the fluid, and specifically the Kapitza resistance below T lambda, we have tested an anodization process external to the cavity, comparing the performances of the cavity before and after external anodization. The tests were done without breaking the vacuum inside the cavity or modifying the inner superconducting layer in any way, and were repeated on different samples. The results show that when the cavity is externally anodized, both the Q-factor and the maximum accelerating field increase. Again, when the oxide layer is removed, the Q-factor shifts towards a lower level and the maximum accelerating field is also reduced.

Evidence for thermal boundary resistance effects on superconducting radiofrequency cavity performances

Vaglio Ruggero
2014

Abstract

The majority of the literature on superconducting cavities for particle accelerators concentrates on the interaction of a radiofrequency (RF) electromagnetic field with a superconductor cooled in liquid helium, generally either at a fixed temperature of 4.2 K or 1.8 K, basing the analysis of experimental results on the assumption that the superconductor is at the same temperature as the infinite reservoir of liquid helium. Only a limited number of papers have extended their analysis to the more complex overall system composed of an RF field, a superconductor and liquid helium. Only a few papers have analyzed, for example, the problem of the Kapitza resistance, i.e. the thermal boundary resistance between the superconductor and the superfluid helium. Among them, the general conclusion is that the Kapitza resistance, one of the most controversial and less understood topics in physics, is generally negligible, or not relevant for the performance enhancement of cavities. In our work presented here, studying the performance of 6 GHz niobium (Nb) test cavities, we have discovered and studied a new effect consisting of an abrupt change in the surface resistance versus temperature at the superfluid helium lambda transition T lambda. This abrupt change (or 'jump') clearly appears when the RF measurement of a cavity is performed at constant power rather than at a constant field. We have correlated this jump to a change in the thermal exchange regime across the lambda transition, and, through a simple thermal model and further reasonable assumptions, we have calculated the thermal boundary resistance between niobium and liquid helium in the temperature range between 4.2 K and 1.8 K. We find that the absolute values of the thermal resistance both above and below the lambda point are fully compatible with the data reported in the literature for heat transfer to pool boiling helium I (HeI) above T lambda and for the Kapitza interface resistance (below T lambda) between a polished metal surface and superfluid He-II. Finally, based on the well-documented evidence that the surface status of metal to liquid helium influences the heat exchange towards the fluid, and specifically the Kapitza resistance below T lambda, we have tested an anodization process external to the cavity, comparing the performances of the cavity before and after external anodization. The tests were done without breaking the vacuum inside the cavity or modifying the inner superconducting layer in any way, and were repeated on different samples. The results show that when the cavity is externally anodized, both the Q-factor and the maximum accelerating field increase. Again, when the oxide layer is removed, the Q-factor shifts towards a lower level and the maximum accelerating field is also reduced.
2014
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Kapitza resistance
thermal boundary resistance
superconducting cavities
niobium
liquid helium
lambda transition of superfluid helium
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/267929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact