In this work, we present 2D numerical simulations on the migration of a particle suspended in a viscoelastic fluid under Poiseuille flow at finite Reynolds numbers, in order to clarify the simultaneous effects of viscoelasticity and inertia on the lateral particle motion.The governing equations are solved through the finite element method by adopting an Arbitrary Lagrangian-Eulerian (ALE) formulation to handle the particle motion. The high accuracy provided by such a method even for very small particle-wall distances, combined with proper stabilization techniques for viscoelastic fluids, allows obtaining convergent solutions at relatively large flow rates, as compared to previous works. As a result, the detailed non-linear dynamics of the migration phenomenon in a significant range of Reynolds and Deborah numbers is presented.The simulations show that, in agreement with the previous literature, a mastercurve relating the migration velocity of the particle to its 'vertical' position completely describes the phenomenon. Remarkably, we found that, for comparable values of the Deborah and Reynolds numbers, inertial effects are negligible: migration is in practice driven by fluid viscoelasticity only. At moderate Reynolds numbers (20. <. Re<. 200) and by lowering De, the transition from viscoelasticity-driven to inertia-driven regimes occurs through two intermediate regimes characterized by multiple stable solutions, i.e. attractors of particle trajectories at different vertical positions across the gap. At low but non-zero Reynolds numbers, only two stable solutions are found for any non-zero Deborah number in the investigated range. In particular, the wall is always an attractor for the migrating particle.

Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow

Greco F;
2015

Abstract

In this work, we present 2D numerical simulations on the migration of a particle suspended in a viscoelastic fluid under Poiseuille flow at finite Reynolds numbers, in order to clarify the simultaneous effects of viscoelasticity and inertia on the lateral particle motion.The governing equations are solved through the finite element method by adopting an Arbitrary Lagrangian-Eulerian (ALE) formulation to handle the particle motion. The high accuracy provided by such a method even for very small particle-wall distances, combined with proper stabilization techniques for viscoelastic fluids, allows obtaining convergent solutions at relatively large flow rates, as compared to previous works. As a result, the detailed non-linear dynamics of the migration phenomenon in a significant range of Reynolds and Deborah numbers is presented.The simulations show that, in agreement with the previous literature, a mastercurve relating the migration velocity of the particle to its 'vertical' position completely describes the phenomenon. Remarkably, we found that, for comparable values of the Deborah and Reynolds numbers, inertial effects are negligible: migration is in practice driven by fluid viscoelasticity only. At moderate Reynolds numbers (20. <. Re<. 200) and by lowering De, the transition from viscoelasticity-driven to inertia-driven regimes occurs through two intermediate regimes characterized by multiple stable solutions, i.e. attractors of particle trajectories at different vertical positions across the gap. At low but non-zero Reynolds numbers, only two stable solutions are found for any non-zero Deborah number in the investigated range. In particular, the wall is always an attractor for the migrating particle.
2015
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Inertia
Microfluidics
Numerical simulations
Particle migration
Poiseuille flow
Viscoelasticity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact