In this study, we have investigated the indoor environmental corrosion of Ag-based alloys after long-term exposure in a showcase of an exhibition room and in the open atmosphere at the Egyptian Museum of Cairo (Egypt). In order to simulate the corrosion processes that occur at the surface of archaeological artefacts, Ag-based alloys with chemical composition, metallurgical features and micro-chemical structure similar to those of ancient alloys have been purposely produced as sacrificial reference samples. Our findings show that corrosion phenomena on alloy surface are mainly caused by environmental sulphur and chlorine containing species that react in different ways depending on the exhibition conditions and on the alloy composition. This approach allows to identify the degradation agents and mechanisms that really take place at the surface of objects similar to ancient artefacts without the necessity of sampling them. Moreover, it is possible to get useful indications for the safe storage or exhibition of silver archaeological artefacts, their cleaning and conservation.

Indoor environmental corrosion of Ag-based alloys in the EgyptianMuseum (Cairo, Egypt)

Gabriel Maria Ingo;Cristina Riccucci;Tilde de Caro;Alessio Mezzi;Federica Faraldi;Daniela Caschera;Chiara Giuliani;Gabriella Di Carlo
2015

Abstract

In this study, we have investigated the indoor environmental corrosion of Ag-based alloys after long-term exposure in a showcase of an exhibition room and in the open atmosphere at the Egyptian Museum of Cairo (Egypt). In order to simulate the corrosion processes that occur at the surface of archaeological artefacts, Ag-based alloys with chemical composition, metallurgical features and micro-chemical structure similar to those of ancient alloys have been purposely produced as sacrificial reference samples. Our findings show that corrosion phenomena on alloy surface are mainly caused by environmental sulphur and chlorine containing species that react in different ways depending on the exhibition conditions and on the alloy composition. This approach allows to identify the degradation agents and mechanisms that really take place at the surface of objects similar to ancient artefacts without the necessity of sampling them. Moreover, it is possible to get useful indications for the safe storage or exhibition of silver archaeological artefacts, their cleaning and conservation.
2015
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact