Tail-anchored (TA) proteins are membrane proteins that contain an N-terminal domain exposed to the cytosol and a single transmembrane segment near the C-terminus followed by few or no polar residues. TA proteins with a mildly hydrophobic transmembrane domain, such as cytochrome b5 (b5), are able to insert post-translationally into pure lipid vesicles without assistance from membrane proteins. Here, we investigated whether any cytosolic proteins are needed to maintain b5 in a competent state for transmembrane integration. Using b5 constructs translated in vitro or produced in bacteria, we demonstrate that cytosolic proteins are neither necessary nor facilitatory for the unassisted translocation of b5. Furthermore, we demonstrate that no cytosolic protein is involved in the translocation of a C-terminal domain of 85 residues appended to the transmembrane domain of b5. Nevertheless, b5 does bind cytosolic proteins, and in their presence but not in their absence, its insertion into liposomes is inhibited by the thiol oxidant diamide and the alkylating agent N-ethylmaleimide. The effect of diamide is also observed in living cells. Thus, the specific in vivo targeting of b5 might be achieved by interaction with redox-sensitive targeting factors that hinder its nonspecific insertion into any permissive bilayer.

The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers

Colombo Sara Francesca;
2009

Abstract

Tail-anchored (TA) proteins are membrane proteins that contain an N-terminal domain exposed to the cytosol and a single transmembrane segment near the C-terminus followed by few or no polar residues. TA proteins with a mildly hydrophobic transmembrane domain, such as cytochrome b5 (b5), are able to insert post-translationally into pure lipid vesicles without assistance from membrane proteins. Here, we investigated whether any cytosolic proteins are needed to maintain b5 in a competent state for transmembrane integration. Using b5 constructs translated in vitro or produced in bacteria, we demonstrate that cytosolic proteins are neither necessary nor facilitatory for the unassisted translocation of b5. Furthermore, we demonstrate that no cytosolic protein is involved in the translocation of a C-terminal domain of 85 residues appended to the transmembrane domain of b5. Nevertheless, b5 does bind cytosolic proteins, and in their presence but not in their absence, its insertion into liposomes is inhibited by the thiol oxidant diamide and the alkylating agent N-ethylmaleimide. The effect of diamide is also observed in living cells. Thus, the specific in vivo targeting of b5 might be achieved by interaction with redox-sensitive targeting factors that hinder its nonspecific insertion into any permissive bilayer.
2009
Cytochrome b5
Endoplasmic reticulum
Liposomes
Post-translational translocation
Rabbit reticulocyte lysate
Unassisted insertion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268140
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? ND
social impact