Neuronal apoptosis represents an intrinsic suicide program, by which a neuron orchestrates its own destruction. Although engagement of apoptosis requires transcription and protein synthesis, the complete spectrum of genes involved in distinct temporal domains remained unknown until the advent of genomics. In the last ten years, the genome sequences and the development of high-throughput genomic technologies, such as DNA microarrays, have offered the unprecedented experimental opportunities to explore the transcriptional mechanisms underlying apoptosis from a new systems-level perspective. The present review will go over this genomic approach and illustrate its use to dissecting the multigenic program underlying neuronal apoptosis of cerebellar granule neurons.
Transcriptional Mechanisms Underlying Apoptosis in Cerebellar Granule Neurons
Sebastiano Cavallaro
2012
Abstract
Neuronal apoptosis represents an intrinsic suicide program, by which a neuron orchestrates its own destruction. Although engagement of apoptosis requires transcription and protein synthesis, the complete spectrum of genes involved in distinct temporal domains remained unknown until the advent of genomics. In the last ten years, the genome sequences and the development of high-throughput genomic technologies, such as DNA microarrays, have offered the unprecedented experimental opportunities to explore the transcriptional mechanisms underlying apoptosis from a new systems-level perspective. The present review will go over this genomic approach and illustrate its use to dissecting the multigenic program underlying neuronal apoptosis of cerebellar granule neurons.File | Dimensione | Formato | |
---|---|---|---|
prod_303254-doc_92536.pdf
solo utenti autorizzati
Descrizione: Transcriptional Mechanisms Underlying Apoptosis in Cerebellar Granule Neurons
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.