Non-negative matrix factorization is intensively used in text clustering. We investigate its exploitation in the XML domain for clustering XML documents by structure and content into topically homogeneous groups. Non-negative matrix factorization is performed through an alternating least squares method, which incorporates expedients to attenuate the burden of large-scale factorizations. This is especially relevant when massive text-centric XML corpora are processed. Empirical evidence from a comparative evaluation on real-world XML corpora reveals that our approach overcomes several state-of-the-art competitors in effectiveness. © 2013 IEEE.

A latent semantic approach to XML clustering by content and structure based on non-negative matrix factorization

Costa Gianni;Ortale Riccardo
2013

Abstract

Non-negative matrix factorization is intensively used in text clustering. We investigate its exploitation in the XML domain for clustering XML documents by structure and content into topically homogeneous groups. Non-negative matrix factorization is performed through an alternating least squares method, which incorporates expedients to attenuate the burden of large-scale factorizations. This is especially relevant when massive text-centric XML corpora are processed. Empirical evidence from a comparative evaluation on real-world XML corpora reveals that our approach overcomes several state-of-the-art competitors in effectiveness. © 2013 IEEE.
2013
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact