In spite of very distinct genotypic assets, a number of congenital conditions include oxidative stress as a phenotypic hallmark. These disorders include Fanconi's anaemia, ataxia telangiectasia, xeroderma pigmentosum and Bloom's syndrome, as well as two frequent congenital conditions: Down's syndrome and cystic fibrosis. Cancer proneness is a clinical feature shared by these disorders, while other manifestations include early ageing, neurological symptoms or congenital malformations. The onset of oxidative stress has been related to excess formation, or defective detoxification, of reactive oxygen species (ROS). This can arise from either the abnormal expression or inducibility of ROS-detoxifying enzymes, or by defective absorption of nutrient antioxidants. Resulting oxidative injury has been characterized through: (i) DNA, protein or lipid oxidative damage; (ii) excess ROS formation (in vitro and ex vivo); (iii) sensitivity to oxygen-related toxicity; (iv) improvement of cellular defects by either hypoxia or antioxidants; and (v) circumstantial evidence for in vivo oxidative stress (as e.g. clastogenic factors). Investigations conducted so far have been confined to individual disorders. Comparative studies of selected indicators for oxidative stress could provide further insights into the pathogenesis of each individual condition. Such a unified approach may have wide-ranging consequences for studies of ageing and cancer.

Congenital disorders sharing oxidative stress and cancer proneness as phenotypic hallmarks: Prospects for joint research in pharmacology

1998

Abstract

In spite of very distinct genotypic assets, a number of congenital conditions include oxidative stress as a phenotypic hallmark. These disorders include Fanconi's anaemia, ataxia telangiectasia, xeroderma pigmentosum and Bloom's syndrome, as well as two frequent congenital conditions: Down's syndrome and cystic fibrosis. Cancer proneness is a clinical feature shared by these disorders, while other manifestations include early ageing, neurological symptoms or congenital malformations. The onset of oxidative stress has been related to excess formation, or defective detoxification, of reactive oxygen species (ROS). This can arise from either the abnormal expression or inducibility of ROS-detoxifying enzymes, or by defective absorption of nutrient antioxidants. Resulting oxidative injury has been characterized through: (i) DNA, protein or lipid oxidative damage; (ii) excess ROS formation (in vitro and ex vivo); (iii) sensitivity to oxygen-related toxicity; (iv) improvement of cellular defects by either hypoxia or antioxidants; and (v) circumstantial evidence for in vivo oxidative stress (as e.g. clastogenic factors). Investigations conducted so far have been confined to individual disorders. Comparative studies of selected indicators for oxidative stress could provide further insights into the pathogenesis of each individual condition. Such a unified approach may have wide-ranging consequences for studies of ageing and cancer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact