Resonant vibrational and rotation-vibration excitation cross sections for electron-CO scattering are calculated in the 0-10 eV energy range for all 81 vibrational states of CO, assuming that the excitation occurs via the 2? shape resonance. Static exchange plus polarization calculations performed using the R-matrix method are used to estimate resonance positions and widths as functions of internuclear separation. The effects of nuclear motion are considered using a local-complex-potential model. Good agreement is obtained with available experimental data on excitation from the vibrational ground state. Excitation rates and cross sections are provided as a function of the initial CO vibrational state for all ground state vibrational levels.

Electron-impact resonant vibration excitation cross sections and rate coefficients for carbon monoxide

Laporta Vincenzo;Celiberto Roberto
2012

Abstract

Resonant vibrational and rotation-vibration excitation cross sections for electron-CO scattering are calculated in the 0-10 eV energy range for all 81 vibrational states of CO, assuming that the excitation occurs via the 2? shape resonance. Static exchange plus polarization calculations performed using the R-matrix method are used to estimate resonance positions and widths as functions of internuclear separation. The effects of nuclear motion are considered using a local-complex-potential model. Good agreement is obtained with available experimental data on excitation from the vibrational ground state. Excitation rates and cross sections are provided as a function of the initial CO vibrational state for all ground state vibrational levels.
2012
Istituto di Nanotecnologia - NANOTEC
Electron-CO collisions
resonant processes
molecular plasmas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? ND
social impact