Resonant vibrational and rotation-vibration excitation cross sections for electron-CO scattering are calculated in the 0-10 eV energy range for all 81 vibrational states of CO, assuming that the excitation occurs via the 2? shape resonance. Static exchange plus polarization calculations performed using the R-matrix method are used to estimate resonance positions and widths as functions of internuclear separation. The effects of nuclear motion are considered using a local-complex-potential model. Good agreement is obtained with available experimental data on excitation from the vibrational ground state. Excitation rates and cross sections are provided as a function of the initial CO vibrational state for all ground state vibrational levels.
Electron-impact resonant vibration excitation cross sections and rate coefficients for carbon monoxide
Laporta Vincenzo;Celiberto Roberto
2012
Abstract
Resonant vibrational and rotation-vibration excitation cross sections for electron-CO scattering are calculated in the 0-10 eV energy range for all 81 vibrational states of CO, assuming that the excitation occurs via the 2? shape resonance. Static exchange plus polarization calculations performed using the R-matrix method are used to estimate resonance positions and widths as functions of internuclear separation. The effects of nuclear motion are considered using a local-complex-potential model. Good agreement is obtained with available experimental data on excitation from the vibrational ground state. Excitation rates and cross sections are provided as a function of the initial CO vibrational state for all ground state vibrational levels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.