Antifog surfaces are necessary for any application requiring optical efficiency of transparent materials. Surface modification methods aimed toward increasing solid surface energy, even when supposed to be permanent, in fact result in a nondurable effect due to the instability in air of highly hydrophilic surfaces. We propose the strategy of combining a hydrophilic chemistry with a nanotextured topography, to tailor a long-lasting antifog modification on commercial transparent plastics. In particular, we investigated a two-step process consisting of self-masked plasma etching followed by plasma deposition of a silicon-based film. We show that the deposition of the silicon-based coatings on the flat (pristine) substrates allows a continuous variation of wettability from hydrophobic to superhydrophilic, due to a continuous reduction of carbon-containing groups, as assessed by Fourier transform infrared and X-ray photoelectron spectroscopies. By depositing these different coatings on previously nanotextured substrates, the surface wettability behavior is changed consistently, as well as the condensation phenomenon in terms of microdroplets/liquid film appearance. This variation is correlated with advancing and receding water contact angle features of the surfaces. More importantly, in the case of the superhydrophilic coating, though its surface energy decreases with time, when a nanotextured surface underlies it, the wetting behavior is maintained durably superhydrophilic, thus durably antifog.

Long-lasting antifog plasma modification of transparent plastics

Palumbo F
Ultimo
2014

Abstract

Antifog surfaces are necessary for any application requiring optical efficiency of transparent materials. Surface modification methods aimed toward increasing solid surface energy, even when supposed to be permanent, in fact result in a nondurable effect due to the instability in air of highly hydrophilic surfaces. We propose the strategy of combining a hydrophilic chemistry with a nanotextured topography, to tailor a long-lasting antifog modification on commercial transparent plastics. In particular, we investigated a two-step process consisting of self-masked plasma etching followed by plasma deposition of a silicon-based film. We show that the deposition of the silicon-based coatings on the flat (pristine) substrates allows a continuous variation of wettability from hydrophobic to superhydrophilic, due to a continuous reduction of carbon-containing groups, as assessed by Fourier transform infrared and X-ray photoelectron spectroscopies. By depositing these different coatings on previously nanotextured substrates, the surface wettability behavior is changed consistently, as well as the condensation phenomenon in terms of microdroplets/liquid film appearance. This variation is correlated with advancing and receding water contact angle features of the surfaces. More importantly, in the case of the superhydrophilic coating, though its surface energy decreases with time, when a nanotextured surface underlies it, the wetting behavior is maintained durably superhydrophilic, thus durably antifog.
2014
Istituto di Nanotecnologia - NANOTEC
aging
antifog surface
nanotexturing
plasma etching
silica-like coating
superhydrophilic surface
superhydrophobic
transparent plastic
File in questo prodotto:
File Dimensione Formato  
di-mundo-et-al-2014-long-lasting-antifog-plasma-modification-of-transparent-plastics.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/268739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 69
social impact