In neurons, small-conductance calcium-activated potassium (KCNN/SK/KCa2) channels maintain calcium homeostasis after N-methyl-D-aspartate (NMDA) receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/KCa2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/KCa2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation. We found that N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA), a positive pharmacological activator of KCNN/SK/KCa2 channels, significantly reduced LPS-stimulated activation of microglia in a concentration-dependent manner. The general KCNN/SK/KCa2 channel blocker apamin reverted these effects of CyPPA on microglial proliferation. Since calcium plays a central role in microglial activation, we further addressed whether KCNN/SK/KCa2 channel activation affected the changes of intracellular calcium levels, [Ca2+]i,, in microglial cells. Our data show that LPS-induced elevation of [Ca2+]i was attenuated following activation of KCNN2/3/KCa2.2/KCa2.3 channels by CyPPA. Furthermore, CyPPA reduced downstream events including tumor necrosis factor alpha and interleukin 6 cytokine production and nitric oxide release in activated microglia. Further, we applied specific peptide inhibitors of the KCNN/SK/KCa2 channel subtypes to identify which particular channel subtype mediated the observed anti-inflammatory effects. Only inhibitory peptides targeting KCNN3/SK3/KCa2.3 channels, but not KCNN2/SK2/KCa2.2 channel inhibition, reversed the CyPPA-effects on LPS-induced microglial proliferation. These findings revealed that KCNN3/SK3/KCa2.3 channels can modulate the LPS-induced inflammatory responses in microglial cells. Thus, KCNN3/SK3/KCa2.3 channels may serve as a therapeutic target for reducing microglial activity and related inflammatory responses in the central nervous system. (c) 2012 Wiley Periodicals, Inc.

Activation of KCNN3/SK3/KCa2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia

Doti Nunzianna;
2012

Abstract

In neurons, small-conductance calcium-activated potassium (KCNN/SK/KCa2) channels maintain calcium homeostasis after N-methyl-D-aspartate (NMDA) receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/KCa2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/KCa2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation. We found that N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA), a positive pharmacological activator of KCNN/SK/KCa2 channels, significantly reduced LPS-stimulated activation of microglia in a concentration-dependent manner. The general KCNN/SK/KCa2 channel blocker apamin reverted these effects of CyPPA on microglial proliferation. Since calcium plays a central role in microglial activation, we further addressed whether KCNN/SK/KCa2 channel activation affected the changes of intracellular calcium levels, [Ca2+]i,, in microglial cells. Our data show that LPS-induced elevation of [Ca2+]i was attenuated following activation of KCNN2/3/KCa2.2/KCa2.3 channels by CyPPA. Furthermore, CyPPA reduced downstream events including tumor necrosis factor alpha and interleukin 6 cytokine production and nitric oxide release in activated microglia. Further, we applied specific peptide inhibitors of the KCNN/SK/KCa2 channel subtypes to identify which particular channel subtype mediated the observed anti-inflammatory effects. Only inhibitory peptides targeting KCNN3/SK3/KCa2.3 channels, but not KCNN2/SK2/KCa2.2 channel inhibition, reversed the CyPPA-effects on LPS-induced microglial proliferation. These findings revealed that KCNN3/SK3/KCa2.3 channels can modulate the LPS-induced inflammatory responses in microglial cells. Thus, KCNN3/SK3/KCa2.3 channels may serve as a therapeutic target for reducing microglial activity and related inflammatory responses in the central nervous system. (c) 2012 Wiley Periodicals, Inc.
2012
potassium KCNN
SK
KCa2 channels
CyPPA
calcium homeostasis
microglia
cytokines
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/269054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 34
social impact