The design of optical systems for micro-focusing of extreme-ultraviolet (XUV) attosecond pulses through grazing-incidence toroidal mirrors is presented. Aim of the proposed configuration is to provide a micro-focused image through a high demagnification of the XUV source with the following characteristics: i) almost negligible aberrations; ii) long exit arm to easily accommodate at the output the experimental setups required for the applications of the focused attosecond pulses; iii) possibility to have an intermediate region where the XUV beam is collimated, in order to insert a plane split-mirror for the generation of two XUV pulse replicas to be used in a XUV-pump/XUV-probe setup. We present the analytical and numerical study of two optical configurations characterized by two sections based on the use of toroidal mirrors. The first section provides a demagnified image of the source in an intermediate focus that is free from defocusing but has a large coma aberration. The second section consists of a relay mirror that is mounted in Z-shaped geometry with respect to the previous one, in order to give a stigmatic image with a coma that is opposite to that provided by the first section. An example is provided to demonstrate the capability to achieve spot sizes in the 5-15 mu m range with a demagnification higher than 10 in a compact envelope. (C) 2013 Optical Society of America

Micro-focusing of attosecond pulses by grazing-incidence toroidal mirrors

Poletto L;Frassetto F;Calegari F;Nisoli M
2013

Abstract

The design of optical systems for micro-focusing of extreme-ultraviolet (XUV) attosecond pulses through grazing-incidence toroidal mirrors is presented. Aim of the proposed configuration is to provide a micro-focused image through a high demagnification of the XUV source with the following characteristics: i) almost negligible aberrations; ii) long exit arm to easily accommodate at the output the experimental setups required for the applications of the focused attosecond pulses; iii) possibility to have an intermediate region where the XUV beam is collimated, in order to insert a plane split-mirror for the generation of two XUV pulse replicas to be used in a XUV-pump/XUV-probe setup. We present the analytical and numerical study of two optical configurations characterized by two sections based on the use of toroidal mirrors. The first section provides a demagnified image of the source in an intermediate focus that is free from defocusing but has a large coma aberration. The second section consists of a relay mirror that is mounted in Z-shaped geometry with respect to the previous one, in order to give a stigmatic image with a coma that is opposite to that provided by the first section. An example is provided to demonstrate the capability to achieve spot sizes in the 5-15 mu m range with a demagnification higher than 10 in a compact envelope. (C) 2013 Optical Society of America
2013
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/269295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact