While the primary reason for nanostructuring lithium-ion active materials is commonly the realization of shorter diffusion pathways for ions and electrons, there are also other, less-expected phenomena occurring when leaving the microscale to enter the nanoscale. Herein, we will present one of these phenomena - the thermally induced fragmentation (i.e., "chopping") of oleic acid-capped anatase TiO<inf>2</inf> nanorods perpendicular to the [001] direction. This fragmentation results in the formation of ultrafine TiO<inf>2</inf> nanoparticles with increased (001) facets. Due to this modified surface facets ratio and the advantageous utilization of carboxymethyl cellulose as binder, these ultrafine nanoparticles present an excellent rate performance and cycling stability - even for cathodic cut-off potentials as low as 0.1 V.

Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance

Binetti Enrico;Binetti Enrico;Striccoli Marinella;Comparelli Roberto;
2015

Abstract

While the primary reason for nanostructuring lithium-ion active materials is commonly the realization of shorter diffusion pathways for ions and electrons, there are also other, less-expected phenomena occurring when leaving the microscale to enter the nanoscale. Herein, we will present one of these phenomena - the thermally induced fragmentation (i.e., "chopping") of oleic acid-capped anatase TiO2 nanorods perpendicular to the [001] direction. This fragmentation results in the formation of ultrafine TiO2 nanoparticles with increased (001) facets. Due to this modified surface facets ratio and the advantageous utilization of carboxymethyl cellulose as binder, these ultrafine nanoparticles present an excellent rate performance and cycling stability - even for cathodic cut-off potentials as low as 0.1 V.
2015
Istituto per i Processi Chimico-Fisici - IPCF
Anatase TiO
CMC
Fragmentation
Lithium-ion anode
Nanoparticles
Nanorods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/269809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact