In this study it was evaluated on a laboratory scale (microcosm), the possibility of using ammonium thiosulphate in assisted phytoextraction for the simultaneous removal of mercury and arsenic from multi-contaminated industrial soil. The species selected were Brassica juncea and Lupinus albus the addition of thiosulfate to the soil greatly promoted the uptake and translocation of both contaminants in the aerial parts of the plants. Mercury concentration in the aerial parts reached in B. juncea 120 mg/kg approximately 40 times the value of the control). The concentration of arsenic also increased significantly in the shoots of B. juncea (14.3 mg/kg), where the value in the control was negligible. Similar trends were obtained for L. albus The results confirmed the known positive effects of thiosulphate in increasing mercury bioavailability for plants, moreover they showed the ability of thiosulphate to mobilize arsenic and significantly to promote its uptake by plants. The increase of arsenic bioavailability, promoted by thiosulfate addition, could be attributed to the competition between arsenate and sulphate ions for the same active sites in the soil surfaces, with the release of arsenic in the soil solution. The use of thiosulfate appears to have great potential since it is a common fertilizer used to promote plant growth and is able to increase the uptake by plants of mercury and arsenic. The simultaneous increase of both contaminants uptake by plants, using a single additive, will provide new insights into the phytoextraction technology in terms of cost and time reduction.

The effect of thiosulphate on arsenic bioavailability in a multi contaminated soil. A novel contribution to phytoextraction

Gianniantonio Petruzzelli;Francesca Pedron;Eliana Tassi;Meri Barbafieri;Irene Rosellini
2014

Abstract

In this study it was evaluated on a laboratory scale (microcosm), the possibility of using ammonium thiosulphate in assisted phytoextraction for the simultaneous removal of mercury and arsenic from multi-contaminated industrial soil. The species selected were Brassica juncea and Lupinus albus the addition of thiosulfate to the soil greatly promoted the uptake and translocation of both contaminants in the aerial parts of the plants. Mercury concentration in the aerial parts reached in B. juncea 120 mg/kg approximately 40 times the value of the control). The concentration of arsenic also increased significantly in the shoots of B. juncea (14.3 mg/kg), where the value in the control was negligible. Similar trends were obtained for L. albus The results confirmed the known positive effects of thiosulphate in increasing mercury bioavailability for plants, moreover they showed the ability of thiosulphate to mobilize arsenic and significantly to promote its uptake by plants. The increase of arsenic bioavailability, promoted by thiosulfate addition, could be attributed to the competition between arsenate and sulphate ions for the same active sites in the soil surfaces, with the release of arsenic in the soil solution. The use of thiosulfate appears to have great potential since it is a common fertilizer used to promote plant growth and is able to increase the uptake by plants of mercury and arsenic. The simultaneous increase of both contaminants uptake by plants, using a single additive, will provide new insights into the phytoextraction technology in terms of cost and time reduction.
2014
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Assisted phytoremediation
Chemical additive
Metal mobilization
Phytoavailability
Plant uptake
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/270116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact