An elementary model of (1 + 1)-dimensional general relativity, known as "R = T " and mainly developed by Mann and coworkers in the early 1990s, is set up in various contexts. Its formulation, mostly in isothermal coordinates, is derived and a relativistic Euler system of selfgravitating gas coupled to a Liouville equation for the metric's conformal factor is deduced. First, external field approximations are carried out: both a Klein-Gordon equation is studied along with its corresponding density, and a Dirac one inside a hydrostatic gravitational field induced by a static, piecewise constant mass repartition. Finally, the coupled Euler-Liouville system is simulated, by means of a locally inertial Godunov scheme: the gravitational collapse of a static random initial distribution of density is displayed. Well-balanced discretizations rely on the treatment of source terms at each interface of the computational grid, hence the metric remains flat in every computational cell.

Locally inertial approximations of balance laws arising in (1 + 1)-dimensional general relativity

Gosse L
2015

Abstract

An elementary model of (1 + 1)-dimensional general relativity, known as "R = T " and mainly developed by Mann and coworkers in the early 1990s, is set up in various contexts. Its formulation, mostly in isothermal coordinates, is derived and a relativistic Euler system of selfgravitating gas coupled to a Liouville equation for the metric's conformal factor is deduced. First, external field approximations are carried out: both a Klein-Gordon equation is studied along with its corresponding density, and a Dirac one inside a hydrostatic gravitational field induced by a static, piecewise constant mass repartition. Finally, the coupled Euler-Liouville system is simulated, by means of a locally inertial Godunov scheme: the gravitational collapse of a static random initial distribution of density is displayed. Well-balanced discretizations rely on the treatment of source terms at each interface of the computational grid, hence the metric remains flat in every computational cell.
2015
Istituto Applicazioni del Calcolo ''Mauro Picone''
1+1 general relativity
Dirac and Klein-Gordon equations
Intrinsic finite differences
Locally inertial scheme
Relativistic hydrodynamics
Schemes
Structure-preserving and well-balanced
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/270515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact