A network of radars sharing the same frequency band, and using properly coded waveforms to improve features attractive from the radar point of view is considered in this article. Non-cooperative games aimed at code design for maximization of the signal-to-interference plus noise ratio (SINR) of each active radar are presented. Code update strategies are proposed, and, resorting to the theory of potential games, the existence of Nash equilibria is analytically proven. In particular, we propose non-cooperative code update procedures for the cases in which a matched filter, a minimum integrated sidelobe level filter, and a minimum peak to sidelobe level filter are used at the receiver. The case in which the received data contain a non-negligible Doppler shift is also analyzed. Experimental results confirm that the proposed procedures reach an equilibrium in few iterations, as well as that the SINR values at the equilibrium are largely superior to those in the case in which classical waveforms are used and no optimization of the radar code is performed. © 2013 Piezzo et al.; licensee Springer.

Non-cooperative code design in radar networks: A game-theoretic approach

Aubry A;
2013

Abstract

A network of radars sharing the same frequency band, and using properly coded waveforms to improve features attractive from the radar point of view is considered in this article. Non-cooperative games aimed at code design for maximization of the signal-to-interference plus noise ratio (SINR) of each active radar are presented. Code update strategies are proposed, and, resorting to the theory of potential games, the existence of Nash equilibria is analytically proven. In particular, we propose non-cooperative code update procedures for the cases in which a matched filter, a minimum integrated sidelobe level filter, and a minimum peak to sidelobe level filter are used at the receiver. The case in which the received data contain a non-negligible Doppler shift is also analyzed. Experimental results confirm that the proposed procedures reach an equilibrium in few iterations, as well as that the SINR values at the equilibrium are largely superior to those in the case in which classical waveforms are used and no optimization of the radar code is performed. © 2013 Piezzo et al.; licensee Springer.
2013
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Game-theoretic; Nash equilibria; Non-cooperative; Noncooperative game; Potential games; Sidelobe levels; Signal to interference plus noise ratio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/270991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact