Aims The cellular prion protein, PrPC, whose aberrant isoforms are related to prion diseases of humans and animals, has a still obscure physiological function. Having observed an increased expression of PrPC in two in vivo paradigms of heart remodelling, we focused on isolated mouse hearts to ascertain the capacity of PrPC to antagonize oxidative damage induced by ischaemic and non-ischaemic protocols. Methods and results Hearts isolated frommice expressing PrPC in variable amounts were subjected to different and complementary oxidative perfusion protocols. Accumulation of reactive oxygen species, oxidation of myofibrillar proteins, and cell death were evaluated.We found that overexpressed PrPC reduced oxidative stress and cell death caused by post-ischaemic reperfusion. Conversely, deletion of PrPC increased oxidative stress during both ischaemic preconditioning and perfusion (15 min) with H2O2. Supporting its relation with intracellular systems involved in oxidative stress, PrPC was found to influence the activity of catalase and, for the first time, the expression of p66Shc, a protein implicated in oxidative stressmediated cell death. Conclusions Our data demonstrate that PrPC contributes to the cardiac mechanisms antagonizing oxidative insults. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The cellular prion protein counteracts cardiac oxidative stress

Massimino Maria Lina;Sorgato Maria Catia;
2014

Abstract

Aims The cellular prion protein, PrPC, whose aberrant isoforms are related to prion diseases of humans and animals, has a still obscure physiological function. Having observed an increased expression of PrPC in two in vivo paradigms of heart remodelling, we focused on isolated mouse hearts to ascertain the capacity of PrPC to antagonize oxidative damage induced by ischaemic and non-ischaemic protocols. Methods and results Hearts isolated frommice expressing PrPC in variable amounts were subjected to different and complementary oxidative perfusion protocols. Accumulation of reactive oxygen species, oxidation of myofibrillar proteins, and cell death were evaluated.We found that overexpressed PrPC reduced oxidative stress and cell death caused by post-ischaemic reperfusion. Conversely, deletion of PrPC increased oxidative stress during both ischaemic preconditioning and perfusion (15 min) with H2O2. Supporting its relation with intracellular systems involved in oxidative stress, PrPC was found to influence the activity of catalase and, for the first time, the expression of p66Shc, a protein implicated in oxidative stressmediated cell death. Conclusions Our data demonstrate that PrPC contributes to the cardiac mechanisms antagonizing oxidative insults. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2014
Cellular prion protein
Heart
Oxidative stress
PrP
ROS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/271356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact