The (VO)-O-IV complex formation by a number of sugar ligands and their phosphate derivatives has been studied by the combined application of pH-potentiometric and spectroscopic (EPR and electronic absorption) techniques. The study allows a comparison of the relative effectiveness of phosphate and sugar residues in (VO)-O-IV binding, Quinic. acid (Quin) behaves similarly as a sugar molecule provided with chelating sets consisting of carboxyl and either deprotonated or undissociated hydroxy groups, or of couples of adjacent alkoxo, groups. Glucuronic and galacturonic. acids (Glu-Ac and Gal-Ac, respectively) are carboxylic, sugars. The position of the OH(4) group, cis or trans with respect to the carboxylic function, is critical for the complexing behaviour. In both cases the closure of a six-membered chelated ring is possible and bis chelated species are formed but only with galacturonic acid. Both these ligands co-ordinate via the alkoxo groups in basic solution. Uridine 5 ' -diphosphoglucose (UDP-Glu) and uridine 5 ' -diphosphoglucuronic acid (LTDP-Glu-Ac) act as diphosphate ligands at low pH. The glucuronic residue permits the carboxylate site to compete effectively with the phosphate moiety in the acidic pH range and to form a transient species with (CO2-, O-) donor set. However, hydroxo species predominate in the neutral and basic pH range, whereas the sugar co-ordination is observed only in very basic solution. The chelation ability of carboxylic sugars is discussed.

Oxovanadium(IV) binding to ligands containing donor sites of biological relevance

D Sanna;
2001

Abstract

The (VO)-O-IV complex formation by a number of sugar ligands and their phosphate derivatives has been studied by the combined application of pH-potentiometric and spectroscopic (EPR and electronic absorption) techniques. The study allows a comparison of the relative effectiveness of phosphate and sugar residues in (VO)-O-IV binding, Quinic. acid (Quin) behaves similarly as a sugar molecule provided with chelating sets consisting of carboxyl and either deprotonated or undissociated hydroxy groups, or of couples of adjacent alkoxo, groups. Glucuronic and galacturonic. acids (Glu-Ac and Gal-Ac, respectively) are carboxylic, sugars. The position of the OH(4) group, cis or trans with respect to the carboxylic function, is critical for the complexing behaviour. In both cases the closure of a six-membered chelated ring is possible and bis chelated species are formed but only with galacturonic acid. Both these ligands co-ordinate via the alkoxo groups in basic solution. Uridine 5 ' -diphosphoglucose (UDP-Glu) and uridine 5 ' -diphosphoglucuronic acid (LTDP-Glu-Ac) act as diphosphate ligands at low pH. The glucuronic residue permits the carboxylate site to compete effectively with the phosphate moiety in the acidic pH range and to form a transient species with (CO2-, O-) donor set. However, hydroxo species predominate in the neutral and basic pH range, whereas the sugar co-ordination is observed only in very basic solution. The chelation ability of carboxylic sugars is discussed.
2001
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/2714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
social impact