We calculate the temperature dependence of the first and second sound velocities in the superfluid phase of a 2D dilute Bose gas by solving Landau's two fluid hydrodynamic equations. We predict the occurrence of a significant discontinuity in both velocities at the critical temperature, as a consequence of the jump of the superfluid density characterizing the Berezinskii-Kosterlitz-Thouless transition. The key role of the thermal expansion coefficient is discussed. We find that second sound in this dilute Bose gas can be easily excited through a density perturbation, thereby, making the perspective of the measurement of the superfluid density particularly favorable.

Discontinuities in the First and Second Sound Velocities at the Berezinskii-Kosterlitz-Thouless Transition

Ozawa Tomoki;Stringari Sandro
2014

Abstract

We calculate the temperature dependence of the first and second sound velocities in the superfluid phase of a 2D dilute Bose gas by solving Landau's two fluid hydrodynamic equations. We predict the occurrence of a significant discontinuity in both velocities at the critical temperature, as a consequence of the jump of the superfluid density characterizing the Berezinskii-Kosterlitz-Thouless transition. The key role of the thermal expansion coefficient is discussed. We find that second sound in this dilute Bose gas can be easily excited through a density perturbation, thereby, making the perspective of the measurement of the superfluid density particularly favorable.
2014
Istituto Nazionale di Ottica - INO
temperature dependence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/271688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact