A metabolic shift from oxidative phosphorylation to glycolysis (i.e. the Warburg effect) occurs in Alzheimer's disease accompanied by an increase of both activity and level of HK-I. The findings reported here demonstrate that in the early phase of apoptosis VDAC1 activity, but not its protein level, progressively decreases, in concomitance with the physical interaction of HK-I with VDAC1. In the late phase of apoptosis, glucose-6-phosphate accumulation in the cell causes the dissociation of the two proteins, the re-opening of the channel and the recovery of VDAC1 function, resulting in a reawakening of the mitochondrial function, thus inevitably leading to cell death.

Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells.

Bobba;Amadoro G;Petragallo VA;Atlante A
2015

Abstract

A metabolic shift from oxidative phosphorylation to glycolysis (i.e. the Warburg effect) occurs in Alzheimer's disease accompanied by an increase of both activity and level of HK-I. The findings reported here demonstrate that in the early phase of apoptosis VDAC1 activity, but not its protein level, progressively decreases, in concomitance with the physical interaction of HK-I with VDAC1. In the late phase of apoptosis, glucose-6-phosphate accumulation in the cell causes the dissociation of the two proteins, the re-opening of the channel and the recovery of VDAC1 function, resulting in a reawakening of the mitochondrial function, thus inevitably leading to cell death.
2015
Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)
FARMACOLOGIA TRASLAZIONALE - IFT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/271765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact