Actinomycetes, filamentous Gram-positive bacteria, are usually exploited as bio-farms naturally producing a wide range of small biologically active metabolites, such as antibiotics, extensively used in medicine, food-industry, chemistry and bio-remediation strategies. The development of high throughput technologies, like proteomics, allows functional genomic studies aimed at shedding light on molecular mechanisms controlling the production of useful compounds and macromolecules. Differential proteomic analyses, performed by using Two Dimensional PolyAcrylamide Gel Electrophoresis (2D-PAGE) coupled to mass spectrometry (MS) procedures, revealed novel links between balhimycin production (a vancomycin-like antibiotic) and metabolic pathway regulation in Amycolatopsis balhimycina DSM5908. In particular, our investigation, performed by combining data from differential proteomic analyses carried-out using wild-type (Wt) and non-producing strains incubated in different growth conditions, showed that antibiotic production is always associated with the up-regulation of either specific enzymes of balhimycin (bal) biosynthetic gene cluster and enzymes related to central carbon metabolism, cell energy and redox balance. Thus this approach suggested new insights to improve fermentation technology strategies and revealed target genes for synthetic biology approaches aimed to improve antibiotic yield production. Copyright © 2012, AIDIC Servizi S.r.l.

From microbial proteomics to synthetic biology: Amycolatopsis balhimycina case

Renzone G;Scaloni A;
2012

Abstract

Actinomycetes, filamentous Gram-positive bacteria, are usually exploited as bio-farms naturally producing a wide range of small biologically active metabolites, such as antibiotics, extensively used in medicine, food-industry, chemistry and bio-remediation strategies. The development of high throughput technologies, like proteomics, allows functional genomic studies aimed at shedding light on molecular mechanisms controlling the production of useful compounds and macromolecules. Differential proteomic analyses, performed by using Two Dimensional PolyAcrylamide Gel Electrophoresis (2D-PAGE) coupled to mass spectrometry (MS) procedures, revealed novel links between balhimycin production (a vancomycin-like antibiotic) and metabolic pathway regulation in Amycolatopsis balhimycina DSM5908. In particular, our investigation, performed by combining data from differential proteomic analyses carried-out using wild-type (Wt) and non-producing strains incubated in different growth conditions, showed that antibiotic production is always associated with the up-regulation of either specific enzymes of balhimycin (bal) biosynthetic gene cluster and enzymes related to central carbon metabolism, cell energy and redox balance. Thus this approach suggested new insights to improve fermentation technology strategies and revealed target genes for synthetic biology approaches aimed to improve antibiotic yield production. Copyright © 2012, AIDIC Servizi S.r.l.
2012
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
File in questo prodotto:
File Dimensione Formato  
prod_297285-doc_92331.pdf

solo utenti autorizzati

Descrizione: From Microbial Proteomics to Synthetic Biology: Amycolatopsis balhimycina case
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 200.95 kB
Formato Adobe PDF
200.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/271872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact