In this work, we report on the use of an AFM - Atomic Force Microscope for positioning of 50 nm-diameter, gold nanoparticles protected by an octanethiol monolayer into a gap between two nanoelectrodes realized by AFM lithography. Nanoparticles depositions were performed by using the spin casting technique, in order to obtain isolated nanoparticles, uniformly dispersed on the sample. Then, the manipulation of nanoparticles on specific portions of a surface, by using an Atomic Force Microscope is described. By using the microscope tip, nanoparticles could be dragged towards predefined positions, allowing to obtain aggregates of nanoparticles on the surface. By using the AFM lithography technique, conducting electrodes made of conducting lanthanum strontium manganite with nanometric-sized gap could be produced, and nanoparticles could be moved to the gap covering the distance between the electrodes.
Atomic Force Microscope manipulation of octanethiol-capped gold nanoparticles deposited by spin casting
Canu Giovanna;Pellegrino Luca;Gerbi Andrea;Bernini Cristina;
2009
Abstract
In this work, we report on the use of an AFM - Atomic Force Microscope for positioning of 50 nm-diameter, gold nanoparticles protected by an octanethiol monolayer into a gap between two nanoelectrodes realized by AFM lithography. Nanoparticles depositions were performed by using the spin casting technique, in order to obtain isolated nanoparticles, uniformly dispersed on the sample. Then, the manipulation of nanoparticles on specific portions of a surface, by using an Atomic Force Microscope is described. By using the microscope tip, nanoparticles could be dragged towards predefined positions, allowing to obtain aggregates of nanoparticles on the surface. By using the AFM lithography technique, conducting electrodes made of conducting lanthanum strontium manganite with nanometric-sized gap could be produced, and nanoparticles could be moved to the gap covering the distance between the electrodes.File | Dimensione | Formato | |
---|---|---|---|
prod_297383-doc_85828.pdf
solo utenti autorizzati
Descrizione: Atomic Force Microscope manipulation of octanethiol-capped gold nanoparticles deposited by spin casting
Dimensione
352.16 kB
Formato
Adobe PDF
|
352.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.