In this study, different light intensities, illumination patterns and Chlamydomonas strains such as CC124 and D1 protein mutant strains (D240, D239-40, D240-41) were investigated for the production of biohydrogen. The results showed that an increase in the lightintensity shortened the lag phase of hydrogen production. With some minor differences, biohydrogenproduction was also found to be affected by the illumination pattern. On the other hand, maximum bio-hydrogen production was reached with a double-deletion mutant strain of D239-40, which attained atotal production of 490 ± 10 mL L-1hydrogen and was followed by the other double-deletion mutantD240-41 that attained a total production of 388 ± 10 mL L-1.©

Biohydrogen production from microalgae still remains to be discussed and examined more specifically, given that it is one of the most important energy carriers possessing environmental-friendly and sustainable characteristics. Although microalgae species capable of biohydrogen production do exist, Chlamydomonas reinhardtii is considered to be one of the most promising eukaryotic H-2 producers, and can serve as a model organism for such studies. Unfortunately, even if the metabolic basis and environmental conditions for this process are well defined, the sustainability of biohydrogen production is not straightforward. At this point, genetic engineering tools must be efficacious in order to enable mutant strains to reach desired amounts of biohydrogen. In this study, different light intensities, illumination patterns and Chlamydomonas strains such as CC124 and D1 protein mutant strains (D240, D239-40, D240-41) were investigated for the production of biohydrogen. The results showed that an increase in the light intensity shortened the lag phase of hydrogen production. With some minor differences, biohydrogen production was also found to be affected by the illumination pattern. On the other hand, maximum biohydrogen production was reached with a double-deletion mutant strain of D239-40, which attained a total production of 490 +/- 10 mL L-1 hydrogen and was followed by the other double-deletion mutant D240-41 that attained a total production of 388 +/- 10 mL L-1. (C) 2014 Elsevier B.V. All rights reserved.

Biohydrogen production using mutant strains of Chlamydomonas reinhardtii: The effects of light intensity and illumination patterns

Cecilia Faraloni;
2014

Abstract

Biohydrogen production from microalgae still remains to be discussed and examined more specifically, given that it is one of the most important energy carriers possessing environmental-friendly and sustainable characteristics. Although microalgae species capable of biohydrogen production do exist, Chlamydomonas reinhardtii is considered to be one of the most promising eukaryotic H-2 producers, and can serve as a model organism for such studies. Unfortunately, even if the metabolic basis and environmental conditions for this process are well defined, the sustainability of biohydrogen production is not straightforward. At this point, genetic engineering tools must be efficacious in order to enable mutant strains to reach desired amounts of biohydrogen. In this study, different light intensities, illumination patterns and Chlamydomonas strains such as CC124 and D1 protein mutant strains (D240, D239-40, D240-41) were investigated for the production of biohydrogen. The results showed that an increase in the light intensity shortened the lag phase of hydrogen production. With some minor differences, biohydrogen production was also found to be affected by the illumination pattern. On the other hand, maximum biohydrogen production was reached with a double-deletion mutant strain of D239-40, which attained a total production of 490 +/- 10 mL L-1 hydrogen and was followed by the other double-deletion mutant D240-41 that attained a total production of 388 +/- 10 mL L-1. (C) 2014 Elsevier B.V. All rights reserved.
2014
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
In this study, different light intensities, illumination patterns and Chlamydomonas strains such as CC124 and D1 protein mutant strains (D240, D239-40, D240-41) were investigated for the production of biohydrogen. The results showed that an increase in the lightintensity shortened the lag phase of hydrogen production. With some minor differences, biohydrogenproduction was also found to be affected by the illumination pattern. On the other hand, maximum bio-hydrogen production was reached with a double-deletion mutant strain of D239-40, which attained atotal production of 490 ± 10 mL L-1hydrogen and was followed by the other double-deletion mutantD240-41 that attained a total production of 388 ± 10 mL L-1.©
Microalgae
Biohydrogen
Anaerobic process
Bioconversion
Bioreactions
Chlamydomonas reinhardtii
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/272182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact