Biochemical processes are typically described in terms of Continuous Time Markov Chains (CTMCs), which is the stochastic pro- cess associated with the well-known Gillespie's Chemical Master Equa- tion (CME). However, this approach is limited by the basic features of CTMC, that is, Markov property, time-invariance and, consequently, exponential decay of both correlation functions and distribution of Wait- ing Times (WTs) between successive reactions. Here we propose a model based on the theory of renewal point processes, i.e., stochastic processes defined as sequences of critical events occurring randomly in time and in- dependent from each other. Renewal theory allows to generalize CTMC modeling to the case of non-exponential behavior observed in many bio- chemical systems at the cell scale and is the natural framework for the study of intermittent time series. In particular, renewal modeling allows to include directly in a simple way non-exponential WT distribution such as slow power-law decay or stretched exponential. In the specific appli- cation of mRNA degradation, a renewal model can include whatever functional form of the degradation rate.

Biochemical reactions as renewal processes: the case of mRNA degradation

Paradisi P;
2014

Abstract

Biochemical processes are typically described in terms of Continuous Time Markov Chains (CTMCs), which is the stochastic pro- cess associated with the well-known Gillespie's Chemical Master Equa- tion (CME). However, this approach is limited by the basic features of CTMC, that is, Markov property, time-invariance and, consequently, exponential decay of both correlation functions and distribution of Wait- ing Times (WTs) between successive reactions. Here we propose a model based on the theory of renewal point processes, i.e., stochastic processes defined as sequences of critical events occurring randomly in time and in- dependent from each other. Renewal theory allows to generalize CTMC modeling to the case of non-exponential behavior observed in many bio- chemical systems at the cell scale and is the natural framework for the study of intermittent time series. In particular, renewal modeling allows to include directly in a simple way non-exponential WT distribution such as slow power-law decay or stretched exponential. In the specific appli- cation of mRNA degradation, a renewal model can include whatever functional form of the degradation rate.
2014
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-84-15814-84-9
J.2 PHYSICAL SCIENCES AND ENGINEERING
J.3 LIFE AND MEDICAL SCIENCES
G.3 PROBABILITY AND STATISTICS
60G18 Self-similar processes
60G55 Point processes
File in questo prodotto:
File Dimensione Formato  
prod_305284-doc_87130.pdf

accesso aperto

Descrizione: Biochemical reactions as renewal processes: the case of mRNA degradation
Tipologia: Versione Editoriale (PDF)
Dimensione 336.51 kB
Formato Adobe PDF
336.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/272331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact