An advanced self-consistent plasma physics model including non-equilibrium vibrational kinetics, a collisional radiative model for atomic species, a Boltzmann solver for the electron energy distribution function, a radiation transport module coupled to a steady inviscid flow solver and, has been applied to study non-equilibrium in high enthalpy flows for Jupiter's atmosphere. Two systems have been considered, a hypersonic shock tube and nozzle expansion, emphasizing the role of radiation reabsorption on macroscopic and microscopic flow properties. Large differences are found between thin and thick plasma conditions not only for the distributions, but also for the macroscopic quantities. In particular, in the nozzle expansion case, the electron energy distribution functions are characterized by a rich structure induced by superelastic collisions between excited species and cold electrons.

Excited-state kinetics and radiation transport in low-temperature plasmas

Colonna G;D'Ammando G;Pietanza LD;Capitelli M
2015

Abstract

An advanced self-consistent plasma physics model including non-equilibrium vibrational kinetics, a collisional radiative model for atomic species, a Boltzmann solver for the electron energy distribution function, a radiation transport module coupled to a steady inviscid flow solver and, has been applied to study non-equilibrium in high enthalpy flows for Jupiter's atmosphere. Two systems have been considered, a hypersonic shock tube and nozzle expansion, emphasizing the role of radiation reabsorption on macroscopic and microscopic flow properties. Large differences are found between thin and thick plasma conditions not only for the distributions, but also for the macroscopic quantities. In particular, in the nozzle expansion case, the electron energy distribution functions are characterized by a rich structure induced by superelastic collisions between excited species and cold electrons.
2015
Electron energy distribution function
Excited states
Non-equilibrium plasma kinetics
Radiation transport
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/272514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact