We have used swift heavy-ion beam based lithography to create patterned bio-functional surfaces on rutile TiO2 single crystals. The applied lithography method generates a permanent and well defined periodic structure of micrometre sized square holes having nanostructured TiO2 surfaces, presenting different physical and chemical properties compared to the surrounding rutile single crystal surface. On the patterned substrates selective binding of oligonucleotides molecules is possible at the surfaces of the holes. This immobilisation process is only being controlled by UV light exposure. The patterned transparent substrates are compatible with fluorescence detection techniques, are mechanically robust, have a high tolerance to extreme chemical and temperature environments, and apparently do not degrade after ten cycles of use. These qualities make the patterned TiO2 substrates useful for potential biosensor applications. (C) 2014 Elsevier B.V. All rights reserved.

Selective binding of oligonucleotide on TiO2 surfaces modified by swift heavy ion beam lithography

2014

Abstract

We have used swift heavy-ion beam based lithography to create patterned bio-functional surfaces on rutile TiO2 single crystals. The applied lithography method generates a permanent and well defined periodic structure of micrometre sized square holes having nanostructured TiO2 surfaces, presenting different physical and chemical properties compared to the surrounding rutile single crystal surface. On the patterned substrates selective binding of oligonucleotides molecules is possible at the surfaces of the holes. This immobilisation process is only being controlled by UV light exposure. The patterned transparent substrates are compatible with fluorescence detection techniques, are mechanically robust, have a high tolerance to extreme chemical and temperature environments, and apparently do not degrade after ten cycles of use. These qualities make the patterned TiO2 substrates useful for potential biosensor applications. (C) 2014 Elsevier B.V. All rights reserved.
2014
Istituto per la Microelettronica e Microsistemi - IMM
Titanium dioxide
Bin-functional surface
Swift heavy ion beam lithography
Nano-topography
Dip-Pen Nanolithography
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/273203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact