Tuber spp. Are ectomycorrhizal fungi that establish symbioses with shrubs and trees. Because of their different smell and taste, Tuber uncinatum and Tuber aestivum are two truffle morphotypes with a different market value, but whether or not T. uncinatum and T. aestivum, are different taxa is still an open debate among mycologists. In order to identify molecular keys characterizing both T. aestivum and T. uncinatum morphotypes, ITS/RFLPs analyses were carried out on a large collection of samples from all over Italy and from other European countries, followed by a study of the phylogenesis of ITS, ß-tubulin and EF 1-± genes, on representative samples. The present study provides compelling evidence that: (i) T. uncinatum and T. aestivum belong to the same species, (ii) neither morphotype presents a specific molecular fingerprints, but they may even share identical alleles at any of the loci analysed; (iii) T. aestivum is most likely under a selfing reproductive mode. Our findings suggest that ecological, rather than genetic causes may account for differences in sporal morphology, taste and smell between T. aestivum and T. uncinatum truffles.

Tuber aestivum and Tuber uncinatum: two morphotypes of two species?

Paolocci F;Rubini A;Riccioni C;Arcioni S
2004

Abstract

Tuber spp. Are ectomycorrhizal fungi that establish symbioses with shrubs and trees. Because of their different smell and taste, Tuber uncinatum and Tuber aestivum are two truffle morphotypes with a different market value, but whether or not T. uncinatum and T. aestivum, are different taxa is still an open debate among mycologists. In order to identify molecular keys characterizing both T. aestivum and T. uncinatum morphotypes, ITS/RFLPs analyses were carried out on a large collection of samples from all over Italy and from other European countries, followed by a study of the phylogenesis of ITS, ß-tubulin and EF 1-± genes, on representative samples. The present study provides compelling evidence that: (i) T. uncinatum and T. aestivum belong to the same species, (ii) neither morphotype presents a specific molecular fingerprints, but they may even share identical alleles at any of the loci analysed; (iii) T. aestivum is most likely under a selfing reproductive mode. Our findings suggest that ecological, rather than genetic causes may account for differences in sporal morphology, taste and smell between T. aestivum and T. uncinatum truffles.
2004
Istituto di Bioscienze e Biorisorse
Tuber
ITS/RFLP
b-Tubulin
EF 1-a
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/27338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact