Advanced X-ray imaging techniques of weakly absorbing structures require an increase of the sensitivity to small refractive angles considering that they are based more on coherent X-ray phase contrast than on X-ray absorption one. Simulations of diffraction properties of germanium (Ge) X-ray crystal monochromators and of analyzer based imaging (ABI) method were performed for various asymmetry factors and several lattice plane orientations using an X-ray energy range from 8 keV to 20 keV. Using an appropriate phase/amplitude retrieval method one can recover the phase information from the ABI image, which is directly proportional to the projected electron density. We are using germanium based optics for X-ray imaging or image magnification. The use of Ge crystals offers several advantages over silicon crystals. The integrated reflectivity of Ge crystals is two to three times larger than that of Si crystals. The spatial resolution of Ge magnifiers is typically two times better than the spatial resolution of Si magnifiers. We used high asymmetry diffractions to increase effectively the propagation distance and decrease the effective pixel size of the detector, to achieve a sufficient magnification of the sample and to improve coherence and increase output intensity. The most important parameter of a highly asymmetric monochromators as image magnifiers is the crystal surface quality. We have applied several crystal surface finishing methods including conventional mechanical lapping, chemical polishing, chemo-mechanical polishing and advanced nano-machining using single point diamond turning (SPDT), and we have evaluated these methods by means of AFM, diffractometry, reciprocal space mapping and others.

Simulations and surface quality testing of high asymmetry angle X-ray crystal monochromators for advanced X-ray imaging applications

Ferrari C;
2014

Abstract

Advanced X-ray imaging techniques of weakly absorbing structures require an increase of the sensitivity to small refractive angles considering that they are based more on coherent X-ray phase contrast than on X-ray absorption one. Simulations of diffraction properties of germanium (Ge) X-ray crystal monochromators and of analyzer based imaging (ABI) method were performed for various asymmetry factors and several lattice plane orientations using an X-ray energy range from 8 keV to 20 keV. Using an appropriate phase/amplitude retrieval method one can recover the phase information from the ABI image, which is directly proportional to the projected electron density. We are using germanium based optics for X-ray imaging or image magnification. The use of Ge crystals offers several advantages over silicon crystals. The integrated reflectivity of Ge crystals is two to three times larger than that of Si crystals. The spatial resolution of Ge magnifiers is typically two times better than the spatial resolution of Si magnifiers. We used high asymmetry diffractions to increase effectively the propagation distance and decrease the effective pixel size of the detector, to achieve a sufficient magnification of the sample and to improve coherence and increase output intensity. The most important parameter of a highly asymmetric monochromators as image magnifiers is the crystal surface quality. We have applied several crystal surface finishing methods including conventional mechanical lapping, chemical polishing, chemo-mechanical polishing and advanced nano-machining using single point diamond turning (SPDT), and we have evaluated these methods by means of AFM, diffractometry, reciprocal space mapping and others.
2014
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
X-ray crystal optics
X-ray imaging
Analyser based imaging
High asymmetric X-ray diffraction
Germanium optics
Single point diamond turning
Crystal surface quality
Surface texture
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/273713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact