High temperature superconductivity emerges in unique materials, like cuprates, that belong to the class of heterostructures at atomic limit, made of a superlattice of superconducting atomic layers intercalated by spacer layers. The physical properties of a strongly correlated electronic system, emerge from the competition between different phases with a resulting inhomogeneity from nanoscale to micron scale. Here, we focus on the spatial arrangements of two types of structural defects in the cuprate La2CuO4+y : (i) the local lattice distortions in the CuO2 active layers and (ii) the lattice distortions around the charged chemical dopants in the spacer layers. We use a new advanced microscopy method: scanning nano X-ray diffraction (nXRD). We show here that local lattice distortions form incommensurate nanoscale ripples spatially anticorrelated with puddles of self-organized chemical dopants in the spacer layers.

Competing striped structures in La2CuO4+y

Campi G;
2013

Abstract

High temperature superconductivity emerges in unique materials, like cuprates, that belong to the class of heterostructures at atomic limit, made of a superlattice of superconducting atomic layers intercalated by spacer layers. The physical properties of a strongly correlated electronic system, emerge from the competition between different phases with a resulting inhomogeneity from nanoscale to micron scale. Here, we focus on the spatial arrangements of two types of structural defects in the cuprate La2CuO4+y : (i) the local lattice distortions in the CuO2 active layers and (ii) the lattice distortions around the charged chemical dopants in the spacer layers. We use a new advanced microscopy method: scanning nano X-ray diffraction (nXRD). We show here that local lattice distortions form incommensurate nanoscale ripples spatially anticorrelated with puddles of self-organized chemical dopants in the spacer layers.
2013
Fractal superconductivity
Granular matter
Local lattice distortions
Oxygen interstitials
Scanning X-ray microdiffraction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/274382
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact