In magnetic resonance (MR) clinical practice, noise estimation is usually performed on Rayleigh-distributed background (no signal area) of magnitude images. Although noise variance in quadrature MR images is considered spatially independent, parallel MRI (pMRI) techniques as SENSE or GRAPPA generate spatially varying noise (SVN) distribution. In this scenario noise estimation from background may produce biased results. To address these limitations we introduce a novel noise estimation scheme based on local statistics. Our method turns out to be more accurate than the other pMRI noise estimation schemes previously described in the literature. Denoising performances, measured by visual inspection and peak signal-to-noise ratio (PSNR), of Non-Local Means denoising filters (NLM) are considerably improved using SVN-NLM in case of inhomogeneous noise. Furthermore, SVN-NLM behaves as well as standard NLM when homogeneous noise was added, thus proving to be a robust and powerful denoising algorithm for arbitrary MRI datasets. © 2014 IEEE.

Unbiased noise estimation and denoising in parallel magnetic resonance imaging

Palma G;Comerci Marco;Alfano Bruno
2014

Abstract

In magnetic resonance (MR) clinical practice, noise estimation is usually performed on Rayleigh-distributed background (no signal area) of magnitude images. Although noise variance in quadrature MR images is considered spatially independent, parallel MRI (pMRI) techniques as SENSE or GRAPPA generate spatially varying noise (SVN) distribution. In this scenario noise estimation from background may produce biased results. To address these limitations we introduce a novel noise estimation scheme based on local statistics. Our method turns out to be more accurate than the other pMRI noise estimation schemes previously described in the literature. Denoising performances, measured by visual inspection and peak signal-to-noise ratio (PSNR), of Non-Local Means denoising filters (NLM) are considerably improved using SVN-NLM in case of inhomogeneous noise. Furthermore, SVN-NLM behaves as well as standard NLM when homogeneous noise was added, thus proving to be a robust and powerful denoising algorithm for arbitrary MRI datasets. © 2014 IEEE.
2014
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
9781479928927
denoising
Noise estimation
non-local means
parallel MRI
Rician noise
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/274404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact