Insulating, polymethylmethacrylate (PMMA), and semiconducting, poly(3-hexylthiophene) (P3HT), nanometer thick polymers/Au nanoparticles based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate. An iterative method, which involves, respectively, spin-coating (PMMA and P3HT deposition) and sputtering (Au nanoparticles deposition) techniques to prepare Au/HyMLs/p-Si Schottky device, was used. The barrier height and the ideality factor of the Au/HyMLs/p-Si Schottky devices were investigated by current-voltage measurements in the thickness range of 1-5 bilayers. It was observed that the barrier height of such hybrid layered systems can be tuned as a function of bilayers number and its evolution was quantified and analyzed. © 2013 AIP Publishing LLC.
Polymer/metal hybrid multilayers modified Schottky devices
Ruffino Francesco;Crupi Isodiana;Grimaldi Maria Grazia;
2013
Abstract
Insulating, polymethylmethacrylate (PMMA), and semiconducting, poly(3-hexylthiophene) (P3HT), nanometer thick polymers/Au nanoparticles based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate. An iterative method, which involves, respectively, spin-coating (PMMA and P3HT deposition) and sputtering (Au nanoparticles deposition) techniques to prepare Au/HyMLs/p-Si Schottky device, was used. The barrier height and the ideality factor of the Au/HyMLs/p-Si Schottky devices were investigated by current-voltage measurements in the thickness range of 1-5 bilayers. It was observed that the barrier height of such hybrid layered systems can be tuned as a function of bilayers number and its evolution was quantified and analyzed. © 2013 AIP Publishing LLC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.