GLAss REinforced (GLARE) is a fibre metal laminate (FML) consisting of alternating layers of thin aluminium and glass fibre reinforced prepregs, whose improved physical properties confer it an interesting advantage over aluminium and composite materials for a number of aerospace applications. On the other hand, contrary to monolithic structures, GLARE can suffer from internal damage either during fabrication or in-serve stages. Non-destructive testing and evaluation (NDT&E) of GLARE is still a challenge, especially considering that large structures are typically sought (e.g., aircraft fuselage). In this paper, we investigated the use of infrared thermography for the inspection of GLARE. The experimental results presented herein demonstrate that it is possible to detect delamination-type defects and to assess the impact severity on GLARE through active thermography techniques, specifically pulsed thermography and vibrothermography. C-scan ultrasonic testing was performed as well with the intention of providing supplementary results.

Delamination detection and impact damage assessment of GLARE by active thermography

E Grinzato;S Marinetti;
2011

Abstract

GLAss REinforced (GLARE) is a fibre metal laminate (FML) consisting of alternating layers of thin aluminium and glass fibre reinforced prepregs, whose improved physical properties confer it an interesting advantage over aluminium and composite materials for a number of aerospace applications. On the other hand, contrary to monolithic structures, GLARE can suffer from internal damage either during fabrication or in-serve stages. Non-destructive testing and evaluation (NDT&E) of GLARE is still a challenge, especially considering that large structures are typically sought (e.g., aircraft fuselage). In this paper, we investigated the use of infrared thermography for the inspection of GLARE. The experimental results presented herein demonstrate that it is possible to detect delamination-type defects and to assess the impact severity on GLARE through active thermography techniques, specifically pulsed thermography and vibrothermography. C-scan ultrasonic testing was performed as well with the intention of providing supplementary results.
2011
Istituto per le Tecnologie della Costruzione - ITC
active thermography
GLARE composites
fibre metal laminates
FMLs
pulsed thermography
PT
vibrothermography
VT
C-scan ultrasounds
impact damage
delaminations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/27481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 52
social impact