Ribosomes translate the genetic code into proteins in all living cells with extremely high efficiency, owing to their inherent flexibility and to their spectacular architecture. During the last 6 decades, extensive effort has been made to elucidate the molecular mechanisms associated with their function, and a quantum jump has been made in recent years, once the three dimensional structures of ribosomes and their functional complexes have been determined. These illuminated key issues in ribosome function, confirmed various biochemical, genetic, and medical findings, and revealed mechanistic details beyond previous expectation, thus leading to conceptual revolutions, and turning old myths into actual facts. Copyright (C) 2008 European Pepticle Society and John Wiley & Sons, Ltd.
Ribosome's mode of function: myths, facts and recent results
Berisio Rita;
2009
Abstract
Ribosomes translate the genetic code into proteins in all living cells with extremely high efficiency, owing to their inherent flexibility and to their spectacular architecture. During the last 6 decades, extensive effort has been made to elucidate the molecular mechanisms associated with their function, and a quantum jump has been made in recent years, once the three dimensional structures of ribosomes and their functional complexes have been determined. These illuminated key issues in ribosome function, confirmed various biochemical, genetic, and medical findings, and revealed mechanistic details beyond previous expectation, thus leading to conceptual revolutions, and turning old myths into actual facts. Copyright (C) 2008 European Pepticle Society and John Wiley & Sons, Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


