The pyrosequencing methodology was applied in 2005 by 454 Lifesciences to the emerging field of next generation sequencing (NGS), revolutionizing the way of DNA sequencing. In the last years the same strategy grew up and was technologically updated, reaching a high throughput in terms of amount of generated sequences (reads) per run and in terms of length of sequence up to values of 800-1,000 bases. These features of pyrosequencing perfectly fit to bacterial genome sequencing for the de novo assemblies and resequencing as well. The approaches of shotgun and paired ends sequencing allow the bacterial genome finishing providing a high-quality data in few days with unprecedented results.

The Pyrosequencing Protocol for Bacterial Genomes

Rizzi;Ermanno
2015

Abstract

The pyrosequencing methodology was applied in 2005 by 454 Lifesciences to the emerging field of next generation sequencing (NGS), revolutionizing the way of DNA sequencing. In the last years the same strategy grew up and was technologically updated, reaching a high throughput in terms of amount of generated sequences (reads) per run and in terms of length of sequence up to values of 800-1,000 bases. These features of pyrosequencing perfectly fit to bacterial genome sequencing for the de novo assemblies and resequencing as well. The approaches of shotgun and paired ends sequencing allow the bacterial genome finishing providing a high-quality data in few days with unprecedented results.
2015
978-1-4939-1719-8
NGS
Pyrosequencing
Reads
Bacterial genomes
Paired ends
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/274863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact