Nanoparticle (NP)-based materials are promising agents for enhancing cancer diagnosis and treatment. Once functionalized for selective targeting of tumor-expressed molecules, they can specifically deliver drugs and diagnostic molecules inside tumor cells. In the present work, we evaluated the in vivo melanoma-targeting ability of a nanovector (HFt-MSHPEG) based on human protein ferritin (HFt), functionalized with both melanoma-targeting melanoma stimulating hormone (?-MSH) and stabilizing poly(ethylene glycol) (PEG) molecules. Independent and complementary techniques, such as whole-specimen confocal microscopy and magnetic resonance imaging, were used to detect in vivo localization of NP constructs with suitable tracers (i.e., fluorophores or magnetic metals). Targeted HFt-MSH-PEG NPs accumulated persistently at the level of primary melanoma and with high selectivity with respect to other organs. Melanoma localization of untargeted HFt-PEG NPs, which lack the ?-MSH moiety, was less pronounced. Furthermore, HFt-MSH-PEG NPs accumulated to a significantly lower extent and with a different distribution in a diverse type of tumor (TS/A adenocarcinoma), which does not express ?-MSH receptors. Finally, in a spontaneous lung metastasis model, HFt-MSH-PEG NPs localized at the metastasis level as well. These results suggest that HFt-MSH-PEG NPs are suitable carriers for selective in vivo delivery of diagnostic or therapeutic agents to cutaneous melanoma.

In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers

Falvo Elisabetta;Morea Veronica;Ceci Pierpaolo
2015

Abstract

Nanoparticle (NP)-based materials are promising agents for enhancing cancer diagnosis and treatment. Once functionalized for selective targeting of tumor-expressed molecules, they can specifically deliver drugs and diagnostic molecules inside tumor cells. In the present work, we evaluated the in vivo melanoma-targeting ability of a nanovector (HFt-MSHPEG) based on human protein ferritin (HFt), functionalized with both melanoma-targeting melanoma stimulating hormone (?-MSH) and stabilizing poly(ethylene glycol) (PEG) molecules. Independent and complementary techniques, such as whole-specimen confocal microscopy and magnetic resonance imaging, were used to detect in vivo localization of NP constructs with suitable tracers (i.e., fluorophores or magnetic metals). Targeted HFt-MSH-PEG NPs accumulated persistently at the level of primary melanoma and with high selectivity with respect to other organs. Melanoma localization of untargeted HFt-PEG NPs, which lack the ?-MSH moiety, was less pronounced. Furthermore, HFt-MSH-PEG NPs accumulated to a significantly lower extent and with a different distribution in a diverse type of tumor (TS/A adenocarcinoma), which does not express ?-MSH receptors. Finally, in a spontaneous lung metastasis model, HFt-MSH-PEG NPs localized at the metastasis level as well. These results suggest that HFt-MSH-PEG NPs are suitable carriers for selective in vivo delivery of diagnostic or therapeutic agents to cutaneous melanoma.
2015
Istituto di Biologia e Patologia Molecolari - IBPM
Confocal microscopy
Ferritin
In vivo melanoma-targeting
Magnetic resonance imaging (MRI)
Protein-based nanoparticles
Spectroscopy (MRS)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/275147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact