Sophisticated approaches have recently led to the identification of novel autoantigens associated with Multiple Sclerosis (MuS), e.g. neurofascin, contactin, CNPase, and other T-cell receptor membrane anchored proteins. These putative antigens, although differing from the conventional myelin derivatives, are conceptually based on an animal model of experimental autoimmune encephalomyelitis. In this report we describe the identification of putative antigens based on their recognition by autoantibodies isolated from MuS patient serum. In a previous work from this laboratory we have shown that a peptide probe, named CSF114(Glc), specifically identifies serum autoantibodies in a subset of MuS patients, representing ? 30% of the patient population. The autoantibodies, purified from MuS patients' sera (six), through CSF114(Glc) affinity chromatography, detected three immunoreactive protein bands present in the rat brain. Proteomic analysis of the immunoreactive bands, involving MALDI and MS/MS techniques, revealed the presence of four proteins distinguishable by their mass: alpha fodrin, alpha actinin 1, creatine kinase, and CNPase. The immunoreactive profile of these rat brain proteins was compared with that of commercially available standard proteins by challenging against either CSF114(Glc) purified MuS autoantibodies, or monoclonal antibodies. Further discrimination among the rat brain proteins was provided by the following procedure: whereas monoclonal antibodies recognized all rat brain proteins, isolated MuS specific antibodies recognize only alpha actinin 1 as a putative antigen. In fact, alpha actinin 1 displayed a robust immunoreactive response against all MuS patients' sera examined, whereas the other three bands were not consistently detectable. Thus, alpha actinin 1, a cyto-skeleton protein implicated in inflammatory/degenerative autoimmune diseases (lupus nephritis and autoimmune hepatitis) might be regarded as a novel MuS autoantigen, perhaps a prototypic biomarker for the inflammatory/degenerative process typical of the disease. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

Alpha actinin is specifically recognized by multiple sclerosis autoantibodies isolated using an n-glucosylated peptide epitope

RealFernandez F;Seraglia R;
2013

Abstract

Sophisticated approaches have recently led to the identification of novel autoantigens associated with Multiple Sclerosis (MuS), e.g. neurofascin, contactin, CNPase, and other T-cell receptor membrane anchored proteins. These putative antigens, although differing from the conventional myelin derivatives, are conceptually based on an animal model of experimental autoimmune encephalomyelitis. In this report we describe the identification of putative antigens based on their recognition by autoantibodies isolated from MuS patient serum. In a previous work from this laboratory we have shown that a peptide probe, named CSF114(Glc), specifically identifies serum autoantibodies in a subset of MuS patients, representing ? 30% of the patient population. The autoantibodies, purified from MuS patients' sera (six), through CSF114(Glc) affinity chromatography, detected three immunoreactive protein bands present in the rat brain. Proteomic analysis of the immunoreactive bands, involving MALDI and MS/MS techniques, revealed the presence of four proteins distinguishable by their mass: alpha fodrin, alpha actinin 1, creatine kinase, and CNPase. The immunoreactive profile of these rat brain proteins was compared with that of commercially available standard proteins by challenging against either CSF114(Glc) purified MuS autoantibodies, or monoclonal antibodies. Further discrimination among the rat brain proteins was provided by the following procedure: whereas monoclonal antibodies recognized all rat brain proteins, isolated MuS specific antibodies recognize only alpha actinin 1 as a putative antigen. In fact, alpha actinin 1 displayed a robust immunoreactive response against all MuS patients' sera examined, whereas the other three bands were not consistently detectable. Thus, alpha actinin 1, a cyto-skeleton protein implicated in inflammatory/degenerative autoimmune diseases (lupus nephritis and autoimmune hepatitis) might be regarded as a novel MuS autoantigen, perhaps a prototypic biomarker for the inflammatory/degenerative process typical of the disease. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
2013
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
DESIGNED GLYCOPEPTIDES
SYNTHETIC PROBES
BIOMARKERS
ANTIBODIES
AUTOIMMUNITY
AUTOANTIGEN
PROTEIN
File in questo prodotto:
File Dimensione Formato  
prod_301774-doc_90130.pdf

accesso aperto

Descrizione: lpha actinin is specifically recognized by multiple sclerosis autoantibodies isolated using an n-glucosylated peptide epitope
Dimensione 231.17 kB
Formato Adobe PDF
231.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/275810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 15
social impact