Composite material constituted by Fe micro-particles homogeneously dispersed in a silicone matrix, at a volume concentration slightly above the percolation threshold but separated by a thin silicone layer, was produced. The particle magnetic softness and their average size, have been properly improved with respect to previous investigations in order to maximize the piezo-resistive and the piezo-magnetic effects. The optimal combination of magneto-elasticity and piezo-resistivity enables to achieve a record value of magneto-piezo-resistivity sensitivity. An analytical model is proposed to simulate the theoretically expected behavior of electric resistance vs. the applied induction field gradient, so to predict the magneto-piezoresistive response and explain the obtained material tailoring. The experimental results have been in good agreement with the theoretically predicted behaviors, so validating the employed model and the interpretation of the phenomenon. A simple basic application in position sensing is also reported. The analytical model presented in this paper has demonstrated its potentiality to project further improvements, while the experimental results allow for different innovative applications. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Magneto-piezoresistance in Magnetorheological elastomers for magnetic induction gradient or position sensors

Ausanio Giovanni;Iannotti Vincenzo;Lanotte Luciano
2014

Abstract

Composite material constituted by Fe micro-particles homogeneously dispersed in a silicone matrix, at a volume concentration slightly above the percolation threshold but separated by a thin silicone layer, was produced. The particle magnetic softness and their average size, have been properly improved with respect to previous investigations in order to maximize the piezo-resistive and the piezo-magnetic effects. The optimal combination of magneto-elasticity and piezo-resistivity enables to achieve a record value of magneto-piezo-resistivity sensitivity. An analytical model is proposed to simulate the theoretically expected behavior of electric resistance vs. the applied induction field gradient, so to predict the magneto-piezoresistive response and explain the obtained material tailoring. The experimental results have been in good agreement with the theoretically predicted behaviors, so validating the employed model and the interpretation of the phenomenon. A simple basic application in position sensing is also reported. The analytical model presented in this paper has demonstrated its potentiality to project further improvements, while the experimental results allow for different innovative applications. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
2014
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Elasto-magnetic composite
Piezoresistivity
Magneto-resistivity
Magnetic field sensors
Displacement sensors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/275862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 52
social impact