Radar signal design in a spectrally crowded environment is a very challenging and topical problem due to the increasing demand for both military surveillance/remote-sensing capabilities and civilian wireless services. This paper deals with the synthesis of optimized radar waveforms ensuring spectral compatibility with the overlayed licensed electromagnetic radiators. A priori information, for instance, provided by a radio environmental map (REM), is exploited to force a spectral constraint on the radar waveform, which is thus the result of a constrained optimization process aimed at improving some radar performances (such as detection, sidelobes, resolution, tracking). The feasibility of the waveform optimization problem is extensively studied, and a solution technique leading to an optimal waveform is proposed. The procedure requires the relaxation of the original problem into a convex optimization problem and involves a polynomial computational complexity. At the analysis stage, the waveform performance is studied in terms of trade-off among the achievable signal to interference plus noise ratio (SINR), spectral shape, and the resulting autocorrelation function (ACF). © 2014 IEEE.
Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization
Aubry A;
2014
Abstract
Radar signal design in a spectrally crowded environment is a very challenging and topical problem due to the increasing demand for both military surveillance/remote-sensing capabilities and civilian wireless services. This paper deals with the synthesis of optimized radar waveforms ensuring spectral compatibility with the overlayed licensed electromagnetic radiators. A priori information, for instance, provided by a radio environmental map (REM), is exploited to force a spectral constraint on the radar waveform, which is thus the result of a constrained optimization process aimed at improving some radar performances (such as detection, sidelobes, resolution, tracking). The feasibility of the waveform optimization problem is extensively studied, and a solution technique leading to an optimal waveform is proposed. The procedure requires the relaxation of the original problem into a convex optimization problem and involves a polynomial computational complexity. At the analysis stage, the waveform performance is studied in terms of trade-off among the achievable signal to interference plus noise ratio (SINR), spectral shape, and the resulting autocorrelation function (ACF). © 2014 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


