A collisional-radiative model for the H2/He plasma, coupled to a Boltzmann solver for the free electron kinetics is used to investigate the non-equilibrium conditions created in the expansion of an high-temperature plasma flow through a converging-diverging nozzle, starting from the steady state composition at T 0 = 10 000 K and p 0 = 1 atm in the reservoir. It is shown that the plasma optical thickness plays a major role on the evolution of macroscopic quantities and internal distributions along the nozzle axis. Structured electron energy distribution functions, characterized by long plateaux and humps, are created due to superelastic collisions of cold electrons and electronically excited atomic hydrogen. The magnitudes of the plateaux are orders of magnitude higher in an optically thick plasma compared with a thin plasma, while the electron-electron collisions play a role in smoothing the peaks created by superelastic collisions between cold electrons and H (n > 2).

The role of radiative reabsorption on the electron energy distribution functions in H2/He plasma expansion through a tapered nozzle

D'Ammando G;Capitelli M;Esposito F;Laricchiuta A;Pietanza LD;Colonna G
2014

Abstract

A collisional-radiative model for the H2/He plasma, coupled to a Boltzmann solver for the free electron kinetics is used to investigate the non-equilibrium conditions created in the expansion of an high-temperature plasma flow through a converging-diverging nozzle, starting from the steady state composition at T 0 = 10 000 K and p 0 = 1 atm in the reservoir. It is shown that the plasma optical thickness plays a major role on the evolution of macroscopic quantities and internal distributions along the nozzle axis. Structured electron energy distribution functions, characterized by long plateaux and humps, are created due to superelastic collisions of cold electrons and electronically excited atomic hydrogen. The magnitudes of the plateaux are orders of magnitude higher in an optically thick plasma compared with a thin plasma, while the electron-electron collisions play a role in smoothing the peaks created by superelastic collisions between cold electrons and H (n > 2).
2014
Istituto di Nanotecnologia - NANOTEC
Electron energy distribution functions; Plasma expansion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/276307
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact