In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly reduces the quadrature computational cost.
Efficient matrix computation for tensor-product isogeometric analysis: The use of sum factorization
A Buffa;M Martinelli;G Sangalli
2015
Abstract
In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly reduces the quadrature computational cost.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_308237-doc_87835.pdf
solo utenti autorizzati
Descrizione: Efficient matrix computation for tensor-product isogeometric analysis: The use of sum factorization
Tipologia:
Versione Editoriale (PDF)
Dimensione
512.58 kB
Formato
Adobe PDF
|
512.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_308237-doc_163632.pdf
accesso aperto
Descrizione: Efficient matrix computation for tensor-product isogeometric analysis: The use of sum factorization
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.