In this work two quantum dot (QD) solar cell structures have been proposed and compared as potential solutions for the realization of the Intermediate Band Solar Cell concept: the well known dot/barrier material system InAs / GaAs and an engineered InAlGaAs/AlGaAs combination. The Al-based structures have been obtained by a suitably developed growth procedure with the aim of increasing island density and engineering the absorption spectrum and the energy band profile in the near infrared region. Along with tunability of the confined electron energy levels, the proposed Al-based structures exhibit transport features, such as reduced edge recombination losses and lower reverse saturation current density with respect to the InAs/GaAs QD system, which can be useful for enhancing device performances. © 2014 AEIT.
InAs/GaAs and InAlGaAs/AlGaAs quantum dot based solar cells for intermediate band operation
Tasco V;Passaseo A;Creti A;Lomascolo M;
2014
Abstract
In this work two quantum dot (QD) solar cell structures have been proposed and compared as potential solutions for the realization of the Intermediate Band Solar Cell concept: the well known dot/barrier material system InAs / GaAs and an engineered InAlGaAs/AlGaAs combination. The Al-based structures have been obtained by a suitably developed growth procedure with the aim of increasing island density and engineering the absorption spectrum and the energy band profile in the near infrared region. Along with tunability of the confined electron energy levels, the proposed Al-based structures exhibit transport features, such as reduced edge recombination losses and lower reverse saturation current density with respect to the InAs/GaAs QD system, which can be useful for enhancing device performances. © 2014 AEIT.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.