We propose the realization of a compact fully-passive biotelemetry tag composed of a high-electron mobility transistor (HEMT) connected to a wireless link. The Gallium Arsenide based gateless HEMT serves both as the environmental sensing element and as the amplitude modulator of the carrier signal received by the antenna. A prototype demonstrator operating in the MHz range has been developed: it consists of an array of transistors with different gate geometries and two spiral loop resonators implementing the wireless link. More specifically, one resonator (Tag-resonator) is connected to the array of transistors, while the other one (Reader-resonator) is connected to a power generator/reader device; the wireless link uses the magnetic coupling between the two resonators. Experimental results demonstrate that the reader-resonator exhibits an intensity modulation of the resonance dip depending on the voltage applied to the HEMT gate. These results will be used as a guideline for the realization of biocompatible sub-millimeter tags operating in the Gigahertz frequency range.b © 2013 Elsevier B.V. All rights reserved.

Wireless system for biological signal recording with Gallium Arsenide high electron mobility transistors as sensing elements

Tasco V;
2013

Abstract

We propose the realization of a compact fully-passive biotelemetry tag composed of a high-electron mobility transistor (HEMT) connected to a wireless link. The Gallium Arsenide based gateless HEMT serves both as the environmental sensing element and as the amplitude modulator of the carrier signal received by the antenna. A prototype demonstrator operating in the MHz range has been developed: it consists of an array of transistors with different gate geometries and two spiral loop resonators implementing the wireless link. More specifically, one resonator (Tag-resonator) is connected to the array of transistors, while the other one (Reader-resonator) is connected to a power generator/reader device; the wireless link uses the magnetic coupling between the two resonators. Experimental results demonstrate that the reader-resonator exhibits an intensity modulation of the resonance dip depending on the voltage applied to the HEMT gate. These results will be used as a guideline for the realization of biocompatible sub-millimeter tags operating in the Gigahertz frequency range.b © 2013 Elsevier B.V. All rights reserved.
2013
Istituto di Nanotecnologia - NANOTEC
Istituto Nanoscienze - NANO
Biosensors
Hemts
Inductive link
Radiofrequency
Wireless power transmission
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/276909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact