In this paper, we aim to design decision-making mechanisms for an autonomous robot equipped with simple sensors, which integrates over time its perceptual experience in order to initiate a simple signalling response. Contrary to other similar studies, in this work the decision-making is uniquely controlled by the time-dependent structures of the agent's controller, which in turn are tightly linked to the mechanisms for sensory-motor coordination. The results of this work show that a single dynamic neural network, shaped by evolution, makes an autonomous agent capable of "feeling" time through the flow of sensations determined by its actions.
Evolving the "feeling" of time through sensory-motor coordination: A robot based model
Trianni V;
2004
Abstract
In this paper, we aim to design decision-making mechanisms for an autonomous robot equipped with simple sensors, which integrates over time its perceptual experience in order to initiate a simple signalling response. Contrary to other similar studies, in this work the decision-making is uniquely controlled by the time-dependent structures of the agent's controller, which in turn are tightly linked to the mechanisms for sensory-motor coordination. The results of this work show that a single dynamic neural network, shaped by evolution, makes an autonomous agent capable of "feeling" time through the flow of sensations determined by its actions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.