In this paper, we study aggregation in a swarm of simple robots, called s-bots, having the capability to self-organize and self-assemble to form a robotic system, called a swarm-bot. The aggregation process, observed in many biological systems, is of fundamental importance since it is the prerequisite for other forms of cooperation that involve self-organization and self-assembling. We consider the problem of defining the control system for the swarm-bot using artificial evolution. The results obtained in a simulated 3D environment are presented and analyzed. They show that artificial evolution, exploiting the complex interactions among s-bots and between s-bots and the environment, is able to produce simple but general solutions to the aggregation problem.

Evolving aggregation behaviors in a swarm of robots

Trianni V;
2003

Abstract

In this paper, we study aggregation in a swarm of simple robots, called s-bots, having the capability to self-organize and self-assemble to form a robotic system, called a swarm-bot. The aggregation process, observed in many biological systems, is of fundamental importance since it is the prerequisite for other forms of cooperation that involve self-organization and self-assembling. We consider the problem of defining the control system for the swarm-bot using artificial evolution. The results obtained in a simulated 3D environment are presented and analyzed. They show that artificial evolution, exploiting the complex interactions among s-bots and between s-bots and the environment, is able to produce simple but general solutions to the aggregation problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/276927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 133
  • ???jsp.display-item.citation.isi??? ND
social impact