Understanding the mechanisms that control chromosome folding in the nucleus of eukaryotes and their contribution to gene regulation is a key open issue in molecular biology. Microscopy and chromatin-capture techniques have shown that chromatin has a complex organization, which dynamically changes across organisms and cell types. The need to make sense of such a fascinating complexity has prompted the development of quantitative models from physics, to find the principles of chromosome folding, its origin and function. Here, we concisely review recent advances in chromosome modeling, focusing on a recently proposed framework, the Strings & Binders Switch (SBS) model, which recapitulates key features of chromosome organization in space and time. © 2014 Elsevier Ltd.

Models of chromosome structure

Nicodemi M;
2014

Abstract

Understanding the mechanisms that control chromosome folding in the nucleus of eukaryotes and their contribution to gene regulation is a key open issue in molecular biology. Microscopy and chromatin-capture techniques have shown that chromatin has a complex organization, which dynamically changes across organisms and cell types. The need to make sense of such a fascinating complexity has prompted the development of quantitative models from physics, to find the principles of chromosome folding, its origin and function. Here, we concisely review recent advances in chromosome modeling, focusing on a recently proposed framework, the Strings & Binders Switch (SBS) model, which recapitulates key features of chromosome organization in space and time. © 2014 Elsevier Ltd.
2014
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/277114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? ND
social impact